Skip to main content

Exploring the Interaction Between Daytime and Situational Sleepiness: A Pilot Study Analyzing Heart Rate Variability

  • Conference paper
  • First Online:
Creativity in Intelligent Technologies and Data Science (CIT&DS 2023)

Abstract

Nowadays, sleepiness research is particularly relevant in fields like transportation, where drowsiness can lead to accidents and fatalities. Developing an accurate sleepiness detector requires a deep and fundamental understanding of sleepiness processes and mechanisms. The purpose of the current study was to investigate the features of evening-night situational sleepiness and heart rate metrics in individuals with different levels of daytime sleepiness. A collection of 32 recordings was gathered from the Subjective Sleepiness Dynamics Dataset. Daytime sleepiness was assessed using the Epworth Sleepiness Scale, while various domain heart rate variability (HRV) metrics and situational sleepiness (measured by the Karolinska and Stanford Sleepiness Scales) were assessed at 8 PM and 10 PM. The study results demonstrated that situational sleepiness increased from 8 PM until 10 PM only in individuals with lower normal daytime sleepiness, which was accompanied by a decrease in TINN, possibly indicating an increase in fatigue. On the other hand, individuals with higher normal daytime sleepiness did not experience a change in subjective sleepiness, but their sympatho-vagal index decreased, and fragmentation heart rate metrics increased from 8 PM to 10 PM. Thus, the results confirmed the hypotheses regarding a significant increase in subjective sleepiness in individuals with lower daytime sleepiness from evening till night, and the different dynamics of HRV metrics from evening till night in individuals with different daytime sleepiness levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, D., Lombardi, D.A., Folkard, S., Willetts, J., Christiani, D.C.: Updating the ‘risk index’: a systematic review and meta-analysis of occupational injuries and work schedule characteristics. Chronobiol. Int. 34(10), 1423–1438 (2017). https://doi.org/10.1080/07420528.2017.1367305

    Article  Google Scholar 

  2. Kecklund, G., Axelsson, J.: Health consequences of shift work and insufficient sleep. BMJ 355, i5210 (2016). https://doi.org/10.1136/bmj.i5210

    Article  Google Scholar 

  3. Abrahamsen, A., Weihe, P., Debes, F., van Leeuwen, W.M.: Sleep, sleepiness, and fatigue on board Faroese fishing vessels. Nat. Sci. Sleep 14, 347–362 (2022). https://doi.org/10.2147/NSS.S342410

    Article  Google Scholar 

  4. Awais, M., Badruddin, N., Drieberg, M.: A Hybrid approach to detect driver drowsiness utilizing physiological signals to improve system performance and wearability. Sensors 17(9), 1991 (2017). https://doi.org/10.3390/s17091991

    Article  Google Scholar 

  5. Arefnezhad, S., Eichberger, A., Frühwirth, M., Kaufmann, C., Moser, M., Koglbauer, I.V.: Driver monitoring of automated vehicles by classification of driver drowsiness using a deep convolutional neural network trained by scalograms of ECG signals. Energies 15(2), 480 (2022). https://doi.org/10.3390/en15020480

    Article  Google Scholar 

  6. Antunes, A.R., Braga, A.C., Gonçalves, J.: Drowsiness transitions detection using a wearable device. Appl. Sci. 13(4), 2651 (2023). https://doi.org/10.3390/app13042651

    Article  Google Scholar 

  7. Flaa, T.A., et al.: Sleep and sleepiness measured by diaries and actigraphy among Norwegian and Austrian helicopter emergency medical service (HEMS) pilots. Int. J. Environ. Res. Public Health 19(7), 4311 (2022). https://doi.org/10.3390/ijerph19074311

    Article  Google Scholar 

  8. Kazemi, Z., Mazloumi, A., Nasl Saraji, G., Barideh, S.: Fatigue and workload in short and long-haul train driving. Work 54(2), 425–433 (2016). https://doi.org/10.3233/WOR-162328

    Article  Google Scholar 

  9. Yan, R., Wu, C., Wang, Y.: Exploration and evaluation of individual difference to driving fatigue for high-speed railway: a parametric SVM model based on multidimensional visual cue. IET Intel. Transport Syst. 12(6), 504–512 (2018). https://doi.org/10.1049/iet-its.2017.0289

    Article  Google Scholar 

  10. Dijk, D.J., Groeger, J.A., Stanley, N., Deacon, S.: Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. Sleep 33(2), 211–223 (2010). https://doi.org/10.1093/sleep/33.2.211

    Article  Google Scholar 

  11. Rabat, A., et al.: Differential kinetics in alteration and recovery of cognitive processes from a chronic sleep restriction in young healthy men. Front. Behav. Neurosci. 10, 95 (2016). https://doi.org/10.3389/fnbeh.2016.00095

    Article  Google Scholar 

  12. Rogers, B., Schaffarczyk, M., Gronwald, T.: Estimation of respiratory frequency in women and men by Kubios HRV software using the polar H10 or movesense medical ECG sensor during an exercise ramp. Sensors 22(19), 7156 (2022). https://doi.org/10.3390/s22197156

    Article  Google Scholar 

  13. Bridges, J., Shishavan, H.H., Salmon, A., Metersky, M., Kim, I.: Exploring the potential of pulse transit time as a biomarker for sleep efficiency through a comparison analysis with heart rate and heart rate variability. Sensors 23(11), 5112 (2023). https://doi.org/10.3390/s23115112

    Article  Google Scholar 

  14. Tang, Q., Chen, Z., Ward, R., Menon, C., Elgendi, M.: PPG2ECGps: an end-to-end subject-specific deep neural network model for electrocardiogram reconstruction from photoplethysmography signals without pulse arrival time adjustments. Bioengineering 10(6), 630 (2023). https://doi.org/10.3390/bioengineering10060630

    Article  Google Scholar 

  15. Guo, K., et al.: Contactless vital sign monitoring system for in-vehicle driver monitoring using a near-infrared time-of-flight camera. Appl. Sci. 12(9), 4416 (2022). https://doi.org/10.3390/app12094416

    Article  Google Scholar 

  16. Kim, J.-Y., Park, J.-H., Jang, S.-Y., Yang, J.-R.: Peak detection algorithm for vital sign detection using doppler radar sensors. Sensors 19(7), 1575 (2019). https://doi.org/10.3390/s19071575

    Article  Google Scholar 

  17. Li, R., Chen, Y.V., Zhang, L.: A method for fatigue detection based on driver’s steering wheel grip. Int. J. Ind. Ergon. 82, 103083 (2021). https://doi.org/10.1016/j.ergon.2021.103083

    Article  Google Scholar 

  18. Barmack, J.E.: Studies on the psychophysiology of boredom: part I. The effect of 15 mgs. of benzedrine sulfate and 60 mgs. of ephedrine hydrochloride on blood pressure, report of boredom and other factors. J. Exp. Psychol. 25(5), 494–505 (1939). https://doi.org/10.1037/h0054402

    Article  Google Scholar 

  19. Hollister, L.E., Clyde, D.J.: Blood levels of pentobarbital sodium, meprobamate, and tybamate in relation to clinical effects. Clin. Pharmacol. Ther. 9(2), 204–208 (1968). https://doi.org/10.1002/cpt196892204

    Article  Google Scholar 

  20. Carskadon, M.A., Dement, W.C.: Sleepiness and sleep state on a 90-min schedule. Psychophysiology 14(2), 127–133 (1977). https://doi.org/10.1111/j.1469-8986.1977.tb03362.x

    Article  Google Scholar 

  21. Åkerstedt, T., Gillberg, M.: Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 52, 29–37 (1990). https://doi.org/10.3109/00207459008994241

    Article  Google Scholar 

  22. Johns, M.W.: A new method for measuring daytime sleepiness: the epworth sleepiness scale. Sleep 14(6), 540–545 (1991). https://doi.org/10.1093/sleep/14.6.540

    Article  Google Scholar 

  23. Åkerstedt, T., Axelsson, J., Lekander, M., Orsini, N., Kecklund, G.: The daily variation in sleepiness and its relation to the preceding sleep episode-a prospective study across 42 days of normal living. J. Sleep Res. 22(3), 258–265 (2012). https://doi.org/10.1111/jsr.12014

    Article  Google Scholar 

  24. Shochat, T.N., Santhi, N., Herer, P., Dijk, D., Skeldon, A.C.: Sleepiness is a signal to go to bed: data and model simulations. SLEEPJ 44(10), zsab123 (2021). https://doi.org/10.1093/sleep/zsab123

    Article  Google Scholar 

  25. Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., Dement, W.C.: Quantification of sleepiness: a new approach. Psychophysiology 10(4), 431–436 (1973). https://doi.org/10.1111/j.1469-8986.1973.tb00801.x

    Article  Google Scholar 

  26. Johns, M.W.: A sleep physiologist’s view of the drowsy driver. Transp. Res. Part F Traffic Psychol. Behav. 3, 241–249 (2000). https://doi.org/10.1016/S1369-8478(01)00008-0

  27. Johns, M.W.: A new perspective on sleepiness. Sleep Biol. Rhythms 8(3), 170–179 (2010). https://doi.org/10.1111/j.1479-8425.2010.00450.x

    Article  MathSciNet  Google Scholar 

  28. Krylova, M., et al.: Evidence for modulation of EEG microstate sequence by vigilance level. Neuroimage 224, 117393 (2021). https://doi.org/10.1016/j.neuroimage.2020.117393

    Article  Google Scholar 

  29. Taranto Montemurro, L., et al.: Relationship of heart rate variability to sleepiness in patients with obstructive sleep apnea with and without heart failure. J. Clin. Sleep Med. 10(3), 271–276 (2014). https://doi.org/10.5664/jcsm.3526

    Article  Google Scholar 

  30. Ha, S.-S., Kim, D.-K.: Diagnostic efficacy of ultra-short term HRV analysis in obstructive sleep apnea. J. Pers. Med. 12, 1494 (2022). https://doi.org/10.3390/jpm12091494

    Article  Google Scholar 

  31. Wei, C.Y., Chung, T.C., Wu, S.C., Chung, C.F., Wu, W.P.: The subjective sleep quality and heart rate variability in hemodialysis patients. Ren. Fail. 33(2), 109–117 (2011). https://doi.org/10.3109/0886022X.2010.541578

    Article  Google Scholar 

  32. Demareva, V., et al.: Temporal dynamics of subjective sleepiness: a convergence analysis of two scales. Biol. Rhythm. Res. 54(4), 369–384 (2023). https://doi.org/10.1080/09291016.2023.2193791

    Article  Google Scholar 

  33. Costa, M.D., Davis, R.B., Goldberger, A.L.: Heart rate fragmentation: a new approach to the analysis of cardiac interbeat interval dynamics. Front. Physiol. 8, 255 (2017). https://doi.org/10.3389/fphys.2017.00255

    Article  Google Scholar 

  34. Ni, Z., Sun, F., Li, Y.: Heart rate variability-based subjective physical fatigue assessment. Sensors 22(9), 3199 (2022). https://doi.org/10.3390/s22093199

    Article  Google Scholar 

  35. Anwer, S., et al.: Identification and classification of physical fatigue in construction workers using linear and nonlinear heart rate variability measurements. J. Constr. Eng. Manag. 149(7), 04023057 (2023). https://doi.org/10.1061/JCEMD4.COENG-1310

    Article  Google Scholar 

  36. Patel, M., Lal, S.K.L., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 38, 7235–7242 (2011). https://doi.org/10.1016/j.eswa.2010.12.028

    Article  Google Scholar 

  37. Furman, G.D., Baharav, A., Cahan, C., Akselrod, S.: Early detection of falling asleep at the wheel: a heart rate variability approach. In: Computers in Cardiology 2008, pp. 1109–1112. IEEE, Bologna, Italy (2008). https://doi.org/10.1109/CIC.2008.4749240

  38. Zhang, N., Fard, M., Bhuiyan, M.H.U., Verhagen, D., Azari, M.F., Robinson, S.R.: The effects of physical vibration on heart rate variability as a measure of drowsiness. Ergonomics 61(9), 1259–1272 (2018). https://doi.org/10.1080/00140139.2018.1482373

    Article  Google Scholar 

  39. Romero, D., Jane, R.: Non-linear HRV analysis to quantify the effects of intermittent hypoxia using an OSA rat model. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4994–4997. IEEE, Berlin, Germany (2019). https://doi.org/10.1109/EMBC.2019.8857636

  40. Costa, M.D., Redline, S., Hughes, T.M., Heckbert, S.R., Goldberger, A.L.: Prediction of cognitive decline using heart rate fragmentation analysis: the multi-ethnic study of atherosclerosis. Front. Aging Neurosci. 13, 708130 (2021). https://doi.org/10.3389/fnagi.2021.708130

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Russian Science Foundation, grant number 22–28-20509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriia Demareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demareva, V., Nazarov, N., Isakova, I., Demarev, A., Zayceva, I. (2023). Exploring the Interaction Between Daytime and Situational Sleepiness: A Pilot Study Analyzing Heart Rate Variability. In: Kravets, A.G., Shcherbakov, M.V., Groumpos, P.P. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2023. Communications in Computer and Information Science, vol 1909. Springer, Cham. https://doi.org/10.1007/978-3-031-44615-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44615-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44614-6

  • Online ISBN: 978-3-031-44615-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics