Skip to main content

The ThermoEMF as a Tool for Increasing the Autonomy of Technological Machines

  • Conference paper
  • First Online:
Creativity in Intelligent Technologies and Data Science (CIT&DS 2023)

Abstract

The authors dwell on the problem of appointing rational cutting modes for machining steels and alloys with a coated carbide tool. To solve it due to operational information about properties of each “coated tool–workpiece” contact pair, the authors have proposed to use the thermoEMF signal value (mV) of a dynamic thermocouple recorded during a test run. To justify the practical relevance of the method proposed, the theoretical foundations and study results of the thermoEMF signal information capacity when evaluating physicomechanical properties of the “steel billet–coated carbide tool” contact pairs for setting rational cutting modes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armendia, M., et al.: Machine tool: from the digital twin to the cyber-physical systems. In: Armendia, M., Ghassempouri, M., Ozturk, E., Peysson, F. (eds.) Twin-Control: A Digital Twin Approach to Improve Machine Tools Lifecycle, pp. 3–21. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-02203-7_1

    Chapter  Google Scholar 

  2. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: 47th ACM/IEEE, Design Automation Conference (DAC). Anaheim, CA, USA (2010). https://doi.org/10.1145/1837274.1837461

  3. Dervojeda, K., Rouwmaat, E., Probst, L., Frideres, L.: Internet of Things: Smart machines and tools. Report of the Business Innovation Observatory for the European Commission, p. 14. Brussels, Belgium (2015)

    Google Scholar 

  4. Kagermann, H., Wahlster, W.: Recommendations for Implementing the strategic initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0 Working Group. https://en.acatech.de/wp-content/uploads/sites/6/2018/03/Final_report__Industrie_4.0_accessible.pdf. Accessed 20 July 2023

  5. Liu, C., Xu, X.: (2017) Cyber-physical machine tool—the Era of Machine Tool 4.0. In: The 50th CIRP Conference on Manufacturing Systems. Taichung, Taiwan https://doi.org/10.1016/j.procir.2017.03.078

  6. How to implement cyber physical systems? Nexus Integra. https://nexusintegra.io/implementing-cyberphysical-systems. Accessed 19 July 2023

  7. Zheng, B., Xu, J., Li, H., Xing, J., Zhao, H., Liu, G.: Development of remotely monitoring and control system for Siemens 840D sl NC machine tool using Snap 7 codes. In: 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017) (2017). https://doi.org/10.2991/eame-17.2017.26

  8. Weck, M., Brecher, C.: Werkzeugmaschinen 3 – Mechatronische Systeme, Vorschubantriebe, Prozessdiagnose. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-32506-2

  9. Chen, J.C., Chen, W.L.: A tool breakage detection system using an accelerometer sensor. J. Intell. Manuf. 10(2), 187–197 (1999)

    Article  MathSciNet  Google Scholar 

  10. Reyes-Uquillas, D.A, Yeh, S.S.: Tool holder sensor design for measuring the cutting force in CNC turning machines. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1218–1223. Busan (2015). https://doi.org/10.1109/aim.2015.7222705

  11. Kozochkin, M., Allenov, D., Andryushchenko, I.: Use of vibro-acoustic monitoring for stabilization stress–strain state of surface layer of workpiece during cutting. In: Radionov, A.A., Kravchenko, O.A., Guzeev, V.I., Rozhdestvenskiy, Y.V. (eds.) Proceedings of the 4th International Conference on Industrial Engineering: ICIE 2018, pp. 1355–1363. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-95630-5_143

    Chapter  Google Scholar 

  12. Khusainov, R.M., Krestyaninov, P.N., Safin, D.D.: Experimental optimization of cutting modes for milling based on vibroacoustic analysis. In: Radionov, A.A., Kravchenko, O.A., Guzeev, V.I., Rozhdestvenskiy, Y.V. (eds.) Proceedings of the 4th International Conference on Industrial Engineering: ICIE 2018, pp. 1483–1489. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-95630-5_158

    Chapter  Google Scholar 

  13. Tretyakov, V.I.: Fundamentals of Metal Science and Production Technology of Sintered Hard Alloys, p. 527. Metallurgy, Moscow (1976). (in Russian)

    Google Scholar 

  14. Sergeev, A.S. et al.: Method for measuring thermo-EMF of a «tool-workpiece» natural thermocouple in chip forming machining. In: MATEC Web of Conferences. https://www.matec-conferences.org/articles/matecconf/pdf/2017/43/matecconf_icmtmte2017_01044.pdf. (2017) Accessed 17 June 2023

  15. Plotnikov, A.L., Krylov, E.G., Frolov, E.M.: Diagnostics of the state of a multicutter hard-alloy tool on the basis of thermoelectric phenomena in the cutting zone. Russ. Engin. Res. 30, 161–165 (2010). https://doi.org/10.3103/S1068798X10020140

    Article  Google Scholar 

  16. Plotnikov, A.L., Chigirinskii, Y.L., Frolov, E.M., et al.: Formulating CAD/CAM modules for calculating the cutting conditions in machining. Russ. Engin. Res. 29, 512–517 (2009). https://doi.org/10.3103/S1068798X09050207

    Article  Google Scholar 

  17. Tikhonova, Z., Kraynev, D., Frolov, E.: Thermo-emf as method for testing properties of replaceable contact Pairs. In: Radionov, A.A., Kravchenko, O.A., Guzeev, V.I., Rozhdestvenskiy, Y.V. (eds.) Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019): Volume II, pp. 1097–1105. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-22063-1_117

    Chapter  Google Scholar 

  18. Lewis, K.: Thermocouple Laws. sciencing.com, https://sciencing.com/thermocouple-laws-5517216.html. Accessed 17 March 2023

  19. N.V. Talantov Physical Foundations of Tool Cutting, Wear and Tear, p. 240. Mashinostroenie, Moscow (1992). (in Russian)

    Google Scholar 

  20. Dalsky, A.M., Kosilova, A.G., Meshcheryakova, R.K., Suslov, A.G. (eds.), Handbook of a Technologist and Mechanical Engineer, p. 912. Mashinostroenie, Moscow (2003). (in Russian)

    Google Scholar 

  21. Tikhonova, Z.S., Frolov, E.M., Krainev, D.V., Plotnikov, A.L.: Experimental research method when developing a mathematical model for calculating cutting speed in the course of turning steels with a coated tool. In: MATEC Web of Conferences: The Proceedings International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2019). https://doi.org/10.1051/matecconf/201929800134

  22. Frolov, E., Krainev, D., Tikhonova, Z.: Cyber-physical machining systems based on commercial CNC equipment. In: 2018 International Russian Automation Conference(RusAutoCon), pp. 1–4. Sochi, Russia (2018). https://doi.org/10.1109/RUSAUTOCON.2018.8501684

  23. Tchigirinsky, Y.L., Chigirinskaya, N.V., Tikhonova, Z.S.: Regression modeling of machining processes. In: Radionov, A.A., Gasiyarov, V.R. (eds.) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020), vol. II, pp. 1101–1108. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-54817-9_128

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanna Tikhonova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tikhonova, Z., Kraynev, D., Frolov, E., Bondarev, A., Kozhevnikova, A. (2023). The ThermoEMF as a Tool for Increasing the Autonomy of Technological Machines. In: Kravets, A.G., Shcherbakov, M.V., Groumpos, P.P. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2023. Communications in Computer and Information Science, vol 1909. Springer, Cham. https://doi.org/10.1007/978-3-031-44615-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44615-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44614-6

  • Online ISBN: 978-3-031-44615-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics