Skip to main content

Structure and Dynamics of Geographic Ranges

  • Chapter
  • First Online:
The Macroecological Perspective

Abstract

Species’ geographic ranges are the basic unit for many macroecological and biogeographical analyses. In this chapter, we start by discussing the ecological and evolutionary processes at the population level that allow the origin of range edges and spatial and temporal patterns of abundance within the species’ geographic ranges. More pragmatically, we discuss how geographic ranges can be defined starting from fundamental biodiversity data (occurrences) using several methods, including ecological and species distribution modeling (ENMs and SDMS). Once geographic ranges are defined and measured, it is possible to understand better their properties, such as the extent of occurrence, occupancy, and position. Moreover, it is possible to evaluate emerging interspecific patterns, such as range size frequency distribution (RSFDs) and Rapoport’s rule. Finally, following the definition of matrix M from Chap. 3, we can evaluate geographic range overlap in macroecological assemblages to provide a refreshing view of two patterns traditionally analyzed in ecology, the species abundance distribution (SAD) and the species-area relationship (SAR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade AFAD, Velazco SJE, De Marco JP (2020) ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ Model Softw 125:104615

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695

    Article  Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Araújo MB, Rozenfeld A (2014) The geographic scaling of biotic interactions. Ecography 37:406–415

    Article  Google Scholar 

  • Araújo MB, Ferri-Yáñez F, Bozinovic F et al (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219

    Article  PubMed  Google Scholar 

  • Araújo MB, Anderson RP, Barbosa MA et al (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5(1):eaat4858

    Article  PubMed  PubMed Central  Google Scholar 

  • Arrhenius O (1921) Species and area. J Ecol 9:95–99

    Article  Google Scholar 

  • Blackburn TM, Cassey P, Gaston KJ (2006) Variations on a theme:sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. J Anim Ecol 75:1426–1439

    Article  PubMed  Google Scholar 

  • Böhm M, Kemp R, Williams R, Davidson AD, Garcia A et al (2017) Rapoport’s rule and determinants of species range size in snakes. Divers Distrib 23:1472–1481

    Article  Google Scholar 

  • Borregaard MK, Rahbek C (2010a) Dispersion fields, diversity fields and null models: uniting range sizes and species richness. Ecography 33:402–407

    Article  Google Scholar 

  • Borregaard MK, Rahbek C (2010b) Causality of the relationship between geographic distribution and species abundance. Q Rev Biol 85:3–25

    Article  PubMed  Google Scholar 

  • Borregaard MK, Gotelli NJ, Rahbek C (2012) Are range-size distributions consistent with species-level heritability? Evolution 66:2216–2226

    Article  PubMed  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH, Maurer BA (1987) Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of the North American avifauna. Am Nat 130:1–17

    Article  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996a) The geographic range: size, shape, boundaries and internal structure. Annu Rev Ecol Syst 27:597–623

    Article  Google Scholar 

  • Bueno AS, Masseli GS, Kaefer IL et al (2020) Sampling design may obscure species-area relationships in landscape-scale field studies. Ecography 43:107–118

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N et al (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157

    Article  Google Scholar 

  • Butlin RK, Bridle JR, Kawata M (2003) Genetics and the boundaries of species’ distributions. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell, London, pp 274–295

    Google Scholar 

  • Callaghan CT, Van Klink R, Rozzi R, Pereira HM (2023) Unveiling global species abundance distributions. Nat Ecol Evol (online early)

    Google Scholar 

  • Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am Nat 155:583–605

    Article  CAS  PubMed  Google Scholar 

  • Castiglione S, Mondanaro A, Melchionna M et al (2017) Diversification rates and the evolution of species range size frequency distribution. Front Ecol Evol 5. https://doi.org/10.3389/fevo.2017.00147

  • Chevalier M, Broennimann O, Cornuault J et al (2021) Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol Appl 31:e02427

    Article  PubMed  Google Scholar 

  • Collevatti RG, Terribile LC, de Oliveira G et al (2013) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. J Biogeogr 40:345–358

    Article  Google Scholar 

  • Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport’s rule. Am Nat 144:570–595

    Article  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:288–289

    Article  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci U S A 106:19651–19658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly SR, Keith S, Colwell RK et al (2017) Mechanism, process, and causation in ecological models. Trends Ecol Evol 32:835–844

    Article  PubMed  Google Scholar 

  • Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113:791–833

    Article  Google Scholar 

  • Cowlishaw G, Hacker JE (1997) Distribution, diversity and latitude in African primates. Am Nat 150:505–512

    Article  CAS  PubMed  Google Scholar 

  • Dallas T, Decker RR, Hastings A (2017) Species are not most abundant in the centre of their geographic range or climatic niche. Ecol Lett 20:1526–1533

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF (2004a) Macroecology and the hierarchical expansion of evolutionary theory. Glob Ecol Biogeogr 13:1–5

    Article  Google Scholar 

  • Diniz-Filho JAF, Torres N (2002) Phylogenetic comparative methods and the geographic range size-body size relationship in new world terrestrial Carnivora. Evol Ecol 16:351–367

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF et al (2009a) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Diniz-Filho JAF, Souza KS, Bini LM et al (2019b) A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography 42:1124–1141

    Article  Google Scholar 

  • Dormann CF, Fründ JH, Schaefer M (2017) Identifying causes of patterns in ecological networks: opportunities and limitations. Annu Rev Ecol Evol Syst 48:559–584

    Article  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol Lett 9:215–227

    Article  PubMed  Google Scholar 

  • Dyer EE, Redding DW, Cassey P et al (2020) Evidence for Rapoport’s rule and latitudinal patterns in the global distribution and diversity of alien bird species. J Biogeogr 47:362–1372

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin J (2023) Species distribution modelling supports the study of past, present and future biogeographies. J Biogeogr 50. (in press)

    Google Scholar 

  • Freckleton RP, Noble D, Webb TJ (2006) Distributions of habitat suitability and the abundance-occupancy relationship. Am Nat 167:260–275

    Article  PubMed  Google Scholar 

  • Fuentes D, Molina M, Chorostecki U et al (2021) PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies. Nucleic Acids Res 50:1062–1068

    Article  Google Scholar 

  • Gaston KJ (1990) Patterns in the geographic range of species. Biol Rev 65:105–129

    Article  Google Scholar 

  • Gaston KJ (1994b) Measuring geographic range sizes. Ecography 17:198–205

    Article  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gaston KJ, Blackburn TM (1997) Age, area and avian diversification. Biol J Linn Soc 62:239–253

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell, Oxford

    Book  Google Scholar 

  • Gaston KJ, Blackburn TM, Spicer JL (1998) Rapoport’s rule: time for an epitaph? Trends Ecol Evol 13:70–74

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 25:483–500

    Article  Google Scholar 

  • Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49:201–204

    Article  PubMed  Google Scholar 

  • Gotelli NJ (2008) A primer of ecology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hanski IA (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, London

    Google Scholar 

  • Hanski IA (1999) Metapopulation ecology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Harte J, Zillio T, Conlisk E et al (2008) Maximum entropy and the state-variable approach to macroecology. Ecology 89:2700–2711

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF (2004) ‘Latitude’ and geographic patterns in species richness. Ecography 27:268–272

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF (2006) Beyond Rapoport’s rule: evaluating range size patterns of New World birds in a two-dimensional framework. Glob Ecol Biogeogr 15:461–469

    Article  Google Scholar 

  • Holt RD (2003) On the evolutionary ecology of species’ ranges. Evol Ecol Res 5:159–178

    Google Scholar 

  • Holt RD, Keitt TH (2000) Alternative causes for range limits: a metapopulation perspective. Ecol Lett 3:41–47

    Article  Google Scholar 

  • Holt RD, Lawton JH, Gaston KJ et al (1997) On the relationship between range size and local abundance: back to basics. Oikos 78:183–190

    Article  Google Scholar 

  • Holt AR, Gaston KJ, He F (2002) Occupancy-abundance relationships and spatial distribution: a review. Basic Appl Ecol 3:1–13

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hui C, McGeoch MA, Reyers B et al (2009) Extrapolating population size from the occupancy-abundance relationship and the scaling pattern of occupancy. Ecol Appl 19:2038–2048

    Article  PubMed  Google Scholar 

  • Hunt G (2008) Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360–377

    Article  Google Scholar 

  • Hunt G, Roy K, Jablonski D (2005) Species-level heritability reaffirmed: a comment on “on the heritability of geographic range sizes”. Am Nat 166:129–135

    Article  PubMed  Google Scholar 

  • Jablonski D (1997) Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385:250–252

    Article  CAS  Google Scholar 

  • Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524

    Article  Google Scholar 

  • Jablonski D (2017a) Approaches to macroevolution: 1. General concepts and origin of variation. Evol Biol 44:427–450

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonski D (2017b) Approaches to macroevolution: 2. Sorting of variation, some overarching issues, and general conclusions. Evol Biol 44:451–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonski D (1987) Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360–363

    Article  CAS  PubMed  Google Scholar 

  • Jansen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Jetz W, Rahbek C (2002) Geometric constraints explain much of the species richness pattern in African birds. Proc Natl Acad Sci U S A 98:5661–5666

    Article  Google Scholar 

  • Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  PubMed  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  • Keith JM, Spring D, Kompas T (2019) Delimiting a species’ geographic range using posterior sampling and computational geometry. Sci Rep 9:8938

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick M, Barton N (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  CAS  PubMed  Google Scholar 

  • Lazarina M, Kallimanis AS, Sgardelis SP (2013) Does the universality of the species-area relationship apply to smaller scales and across taxonomic groups? Ecography 36:965–970

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Leibold MA, Chase JM (2018) Metacommunity ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Levins R (1970) Extinction. In: Gerstenhaber M (ed) Some mathematical problems in biology. American Mathematical Society, Providence, pp 75–107

    Google Scholar 

  • Lima-Ribeiro MS, Varela S, González-Hernández J et al (2015) ecoClimate: a database of climate data from multiple models for past, present, and future for Macroecologists and Biogeographers. Biodivers Inform 10:1–21

    Article  Google Scholar 

  • Lomolino MV (2000a) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lyons SK, Willig MR (1997) Latitudinal patterns of range size: methodological concerns and empirical evaluations for New World bats and marsupials. Oikos 79:568–580

    Article  Google Scholar 

  • MacArthur R (1972) Geographical ecology. Princeton University Press, New Jersey

    Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387

    Article  Google Scholar 

  • MacArthur R, Wilson EO (1967) The equilibrium theory of Island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacKenzie DI, Nichols JD, Royle A et al (2018) Occupancy estimation and modeling, 2nd edn. Academic Press, London

    Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity. Oxford University Press, Oxford

    Google Scholar 

  • Martínez-Meyer E, Díaz-Porras D, Peterson AT et al (2013) Ecological niche structure and rangewide abundance patterns of species. Biol Lett 9:20120637

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda K, Setoguchi H, Nagasawa K et al (2023) Rear-edge daylily populations show legacies of habitat fragmentation due to the Holocene climate warming. J Biogeogr 50. (in press)

    Google Scholar 

  • Matthews TJ, Guilhaumon F, Triantis KA et al (2016) Species-area relationships in islands and habitat islands. Glob Ecol Biogeogr 25:847–858

    Article  Google Scholar 

  • Matthews TJ, Triantis KA, Whittaker RJ (2021) The species-area relationship: theory and application. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maurer BA (1994) Geographical population analysis: tools for the analysis of biodiversity. Wiley, New Jersey

    Google Scholar 

  • Maurer BA (1999) Untangling ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Maurer BA, Taper ML (2002) Connecting geographical distributions with population processes. Ecol Lett 5:223–231

    Article  Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, MacArthur RH, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, pp 81–119

    Google Scholar 

  • McGill BJ (2003b) A test of the unified neutral theory of biodiversity. Nature 422:881–885

    Article  CAS  PubMed  Google Scholar 

  • McGill BJ (2010) Towards a unification of unified theories of biodiversity. Ecol Lett 14:672–642

    Google Scholar 

  • McGill BJ (2011) Species abundance distributions. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 105–122

    Google Scholar 

  • McGill BJ (2019) The what, how and why of doing macroecology. Glob Ecol Biogeogr 28:6–17

    Article  Google Scholar 

  • McGill BJ, Collins C (2003) A unified theory for macroecology based on spatial patterns of abundance. Evol Ecol Res 5:469–492

    Google Scholar 

  • McGill BJ, Nekola JC (2010) Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos 119:591–603

    Article  Google Scholar 

  • McGill BJ, Maurer BA, Weiser MD (2006) Empirical evaluation of neutral theory. Ecology 87:1411–1423

    Article  PubMed  Google Scholar 

  • McGill BJ, Etienne RS, Gray JS et al (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015

    Article  PubMed  Google Scholar 

  • Meyer L, Diniz-Filho JAF, Lohmann LG (2017) A comparison of hull methods for estimating species ranges and richness maps. Plant Ecolog Divers 10:389–401

    Article  Google Scholar 

  • Morlon H, White EP, Etienne RS et al (2009) Taking species abundance distributions beyond individuals. Ecol Lett 12:488–501

    Article  PubMed  Google Scholar 

  • Morueta-Holme N, Enquist BJ, McGill BJ et al (2013) Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol Lett 16:1446–1454

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nori J, Prieto-Torres DA, Villalobos F et al (2023) Contrasting biogeographical patterns of threatened vertebrates on islands emerge from disparities between expert-derived maps and Global Biodiversity Information Facility data. J Biogeogr 50. (in press)

    Google Scholar 

  • Novosolov M, Rodda GH, North AC, Butchart SHM, Tallowin OJS et al (2017) Population density-range size relationship revisited. Glob Ecol Biogeogr 26:1088–1097

    Article  Google Scholar 

  • O’Sullivan JD, Knell RJ, Rossberg AG (2019) Metacommunity-scale biodiversity regulation and the self-organised emergence of macroecological patterns. Ecol Lett 22:1428–1438

    Article  PubMed  Google Scholar 

  • O’Sullivan JD, Terry JCD, Rossberg AG (2021) Intrinsic ecological dynamics drive biodiversity turnover in model metacommunities. Nat Commun 12:3627

    Article  PubMed  PubMed Central  Google Scholar 

  • Osorio-Olvera L, Yañez-Arenas C, Martínez-Meyer E et al (2020) Relationships between population densities and niche-centroid distances in North American birds. Ecol Lett 23:555–564

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Tikhonov G, Norberg A et al (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol Lett 20:561–576

    Article  PubMed  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions (MPB-49). Princeton University Press, Princeton

    Book  Google Scholar 

  • Pigot AL, Phillimore AB, Owens IPF et al (2010) The shape and temporal dynamics of phylogenetic trees arising from geographic speciation. Syst Biol 59:660–673

    Article  PubMed  Google Scholar 

  • Pintor AFV, Schwarzkopf L, Krockenberger AK (2015) Rapoport’s rule: do climatic variability gradients shape range extent? Ecol Monogr 85:643–659

    Article  Google Scholar 

  • Pironon S, Papuga G, Villellas J, Angert AL, García MB et al (2017) Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev 92:1877–1909

    Article  PubMed  Google Scholar 

  • Ponti R, Sannolo M (2022) The importance of including phenology when modelling species ecological niche. Ecography 45:e06143

    Google Scholar 

  • Preston FW (1962a) The canonical distribution of commonness and rarity, part I. Ecology 43:185–215

    Article  Google Scholar 

  • Preston FW (1962b) The canonical distribution of commonness and rarity, part II. Ecology 43:410–432

    Article  Google Scholar 

  • Rabosky DL, Chang J, Title PO et al (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–395

    Article  CAS  PubMed  Google Scholar 

  • Rahbek C, Gotelli NJ, Colwell RK et al (2006) Predicting continental-scale patterns of bird species richness with spatially explicit model. Proc R Soc B 274:165–174

    Article  PubMed Central  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF (2005b) An evolutionary tolerance model explaining spatial patterns in species richness under environmental gradients and geometric constraints. Ecography 28:253–263

    Article  Google Scholar 

  • Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126

    Article  Google Scholar 

  • Rangel TF, Diniz-Filho JAF, Colwell RK (2007) Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am Nat 170:602–616

    Article  PubMed  Google Scholar 

  • Rapoport E (1982) Areography: geographic strategies of species. Pergamon Press, Oxford

    Google Scholar 

  • Rice SH (2004) Evolutionary theory: mathematical and conceptual foundations. Oxford University Press, Oxford

    Google Scholar 

  • Richards CL, Carstens BC, Lacey Knowles L (2007) Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. J Biogeogr 34:1833–1845

    Article  Google Scholar 

  • Ricklefs RE, Bermingham E (2002) The concept of the taxon cycle in biogeography. Glob Ecol Biogeogr 11:353–361

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species-diversity -the search for the primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Rohde K, Heap M, Heap D (1993) Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am Nat 142:1–16

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, New York

    Book  Google Scholar 

  • Rosindell J, Chisholm RA (2021) The species-area relationships of ecological neutral theory. In: Matthews TJ, Triantis KA, Whittaker RJ (eds) The species-area relationship. Cambridge University Press, Cambridge, pp 259–288

    Chapter  Google Scholar 

  • Rosindell J, Cornell SJ (2007) Species-area relationships from a spatially explicit neutral model in an infinite landscape. Ecol Lett 10:586–595

    Article  PubMed  Google Scholar 

  • Rosindell J, Cornell SJ (2009) Species-area curves, neutral models and long-distance dispersal. Ecology 90:1743–1750

    Article  PubMed  Google Scholar 

  • Roughgarden J (1996) Theory of population genetics and evolutionary ecology: an introduction. Prentice Hall, New Jersey

    Google Scholar 

  • Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Glob Ecol Biogeogr 16:401–414

    Article  Google Scholar 

  • Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147

    Article  Google Scholar 

  • Saupe EE, Barve V, Myers CE et al (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol Model 237:11–22

    Article  Google Scholar 

  • Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12:441–447

    Article  Google Scholar 

  • Seliger BJ, McGill BJ, Svenning J-C et al (2021) Widespread underfilling of the potential ranges of North American trees. J Biogeogr 48:359–371

    Article  Google Scholar 

  • Shalom HY, Granot I, Blowes SA et al (2020) A closer examination of the ‘abundant centre’ hypothesis for reef fishes. J Biogeogr 47:2194–2209

    Article  Google Scholar 

  • Sillero N (2011) What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol Model 222:1343–1346

    Article  Google Scholar 

  • Sillero N, Arenas-Castro S, Enrique-Urzelai U et al (2021) Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Model 456:109671

    Article  Google Scholar 

  • Sizling AL, Kunin WE, Storch D (2013) Taxon invariances, maximum entropy and the species-area relationship. Am Nat 178:602–611

    Google Scholar 

  • Smith FA, Gittleman JL, Brown JH (2014) Foundations of macroecology: classic papers with commentaries. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Soberón J, Nakamura M (2009) Niche and distributional areas: concepts, methods and assumptions. Proc Natl Acad Sci U S A 106:19644–19650

    Article  PubMed  PubMed Central  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Article  Google Scholar 

  • Sporbert M, Keil P, Seidler G et al (2020) Testing macroecological abundance patterns: the relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J Biogeogr 47:2210–2222

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range-how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  PubMed  Google Scholar 

  • Storch D (2016) The theory of the nested species-area relationship: geometric foundations of biodiversity scaling. J Veg Sci 27:880–891

    Article  Google Scholar 

  • Storch D, Keil P, Jetz W (2012) Universal species-area and endemics-area relationships at continental scales. Nature 488:78–81

    Article  CAS  PubMed  Google Scholar 

  • Sugihara G, Bersier LF, Southwood RE et al (2003) Predicted correspondence between species abundances and dendrograms of niche similarities. Proc Natl Acad Sci U S A 100:5246–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Taylor P, Gaines S (1999) Can Rapoport’s rule be rescued? Modeling causes of the latitudinal gradient in species richness. Ecology 80:2474–2482

    Google Scholar 

  • Ten Caten C, Holian LA, Dallas T (2022) Effects of occupancy estimation on abundance-occupancy relationships. Biol Lett 18:20220137

    Article  PubMed  PubMed Central  Google Scholar 

  • Ten Caten C, Lima-Ribeiro MS, Yañez-Arenas C et al (2023) Robustness of Bergmann’s and Rapoport’s rules to different geographical range estimates in New World pit vipers. J Biogeogr 50:365–379

    Article  Google Scholar 

  • ter Steege H, Prado PI, de Lima RA et al (2020) Biased-corrected richness estimates for the Amazonian tree flora. Sci Rep 10:1–13

    Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Münkemüller T, Lavergne S et al (2013) A road map for integrating eco-evolutionary processes into biodiversity models. Ecol Lett 16:94–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Tjørve E (2012) Arrhenius and Gleason revisited: new hybrid models resolve an old controversy. J Biogeogr 39:629–639

    Article  Google Scholar 

  • Tjørve E, Kunin W, Polce C et al (2008) Species-area relationship: separating the effects of species abundance and spatial distribution. J Ecol 96:1141–1151

    Article  Google Scholar 

  • Tjørve E, Matthews TJ, Whittaker RJ (2021) The history of the species-area relationship. In: Matthews TJ, Triantis KA, Whittaker RJ (eds) The species-area relationship. Cambridge University Press, Cambridge, pp 20–48

    Chapter  Google Scholar 

  • Tourinho L, Sinervo B, Caetano GHO et al (2021) A less data demanding ecophysiological niche modeling approach for mammals with comparison to conventional correlative niche modeling. Ecol Model 457:109687

    Article  Google Scholar 

  • Triantis KA, Guilhaumon F, Whittaker RJ (2012) The Island species-area relationship: biology and statistics. J Biogeogr 39:215–231

    Article  Google Scholar 

  • Ugland KI, Lambshead PJD, McGill BJ et al (2007) Modelling dimensionality in species abundance distributions: description and evaluation of the Gambin model. Evol Ecol Res 9:313–324

    Google Scholar 

  • Ulrich W, Ollik M, Ugland KI (2010) A meta-analysis of species-abundance distributions. Oikos 119:1149–1155

    Article  Google Scholar 

  • Volkov I, Banavar JR, Hubbell SP et al (2003) Neutral theory and relative species abundance in ecology. Nature 424:1035–1037

    Article  CAS  PubMed  Google Scholar 

  • Waldron A (2007) Null models of geographic range size evolution reaffirm its heritability. Am Nat 170:221–231

    Article  PubMed  Google Scholar 

  • Warton DI, Blanchet FG, O’Hara RB et al (2015) So many variables: joint modeling in community ecology. Trends Ecol Evol 30:766–779

    Article  PubMed  Google Scholar 

  • Watkinson AR, Gill JA, Freckleton RP (2003) Macroecology and microecology: linking large-scale patterns of abundance to population processes. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell London, pp 256–273

    Google Scholar 

  • Webb T, Gaston KJ (2003) On the heritability of geographic ranges. Am Nat 161:553–566

    Article  PubMed  Google Scholar 

  • Weber MM, Stevens RD, Lorini ML et al (2014) Have old species reached most suitable areas? Glob Ecol Biogeogr 23:1177–1185

    Article  Google Scholar 

  • Weber MM, Stevens RD, Diniz-Filho JAF et al (2017) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 40:817–828

    Article  Google Scholar 

  • Werneck FP, Gamble T, Colli GR et al (2012) Deep diversification and long-term persistence in the south american ‘dry diagonal’: integrating continent-wide phylogeography and distribution modeling of geckos. Evolution 66:3014–3034

    Article  PubMed  Google Scholar 

  • White EP, Ernest SKM, Kerkhoff AJ et al (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  PubMed  Google Scholar 

  • Williamson M, Gaston KJ (2005) The lognormal distribution is not an appropriate null hypothesis for the species-abundance distribution. J Anim Ecol 74:409–422

    Article  Google Scholar 

  • Willis J (1922) Age and area. Cambridge University Press, London

    Google Scholar 

  • Worm B, Tittensor DP (2018) A theory of global biodiversity. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wu Y, Ricklefs RE (2022) Linking multiple hypotheses to a unifying framework of range-size variation: a case study with American oaks (Quercus spp.). Glob Ecol Biogeogr 32:95–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz-Filho, J.A.F. (2023). Structure and Dynamics of Geographic Ranges. In: The Macroecological Perspective. Springer, Cham. https://doi.org/10.1007/978-3-031-44611-5_4

Download citation

Publish with us

Policies and ethics