Skip to main content

A Perspective on Environmental and Disposal Assessment of Magnetic Sorbents

  • Chapter
  • First Online:
Iron Oxide-Based Nanocomposites and Nanoenzymes

Abstract

While adsorption is an age-old technique for the treatment of contaminated water, the involvement of magnetic phase separation is relatively new. Magnetism in adsorbents (or magnetic adsorbents) has eased the recovery of micro/nano-adsorbents post-adsorption. Magnetic adsorbents could lower the operation time/cost and improve the overall efficacy of the adsorption process. In this book, most of the chapters have highlighted the use of magnetic adsorbents in water remediation applications. This chapter is focused on the regeneration strategies and disposal assessment of magnetic adsorbents and eluents post-exhaustion. Moreover, the chapter has been updated with some accounts of repurposing strategies for exhausted magnetic adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel Maksoud MIA, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096. https://doi.org/10.1016/j.ccr.2019.213096

    Article  Google Scholar 

  2. Arabkhani P, Asfaram A (2020) Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J Hazard Mater 384:121394. https://doi.org/10.1016/j.jhazmat.2019.121394

    Article  PubMed  Google Scholar 

  3. Binnemans K, Jones PT (2017) Solvometallurgy: an emerging branch of extractive metallurgy. J Sustain Metall 3(3):570–600. https://doi.org/10.1007/s40831-017-0128-2

    Article  Google Scholar 

  4. Biswas S, Pal A, Pal T (2020) Supported metal and metal oxide particles with proximity effect for catalysis. RSC Adv 10(58):35449–35472. https://doi.org/10.1039/D0RA06168A

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chaukura N, Gwenzi W, Tavengwa N, Manyuchi MM (2016) Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. Environ Dev 19:84–89. https://doi.org/10.1016/j.envdev.2016.05.002

    Article  Google Scholar 

  6. Chen B, Zhao X, Liu Y, Xu B, Pan X (2015) Highly stable and covalently functionalized magnetic nanoparticles by polyethyleneimine for Cr(vi) adsorption in aqueous solution. RSC Adv 5(2):1398–1405. https://doi.org/10.1039/C4RA10602D

    Article  Google Scholar 

  7. Cruz DRS, Santos BTJ, Cunha GC, Romão LPC (2017) Green synthesis of a magnetic hybrid adsorbent (CoFe2O4/NOM): removal of chromium from industrial effluent and evaluation of the catalytic potential of recovered chromium ions. J Hazard Mater 334:76–85. https://doi.org/10.1016/j.jhazmat.2017.03.062

    Article  PubMed  Google Scholar 

  8. Dai K, Wang F, Jiang W, Chen Y, Mao J, Bao J (2017) Magnetic carbon microspheres as a reusable adsorbent for sulfonamide removal from water. Nanoscale Res Lett 12(1):528. https://doi.org/10.1186/s11671-017-2295-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deng Y, Ok YS, Mohan D, Pittman CU, Dou X (2019) Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. Environ Res 169:434–444. https://doi.org/10.1016/j.envres.2018.11.035

    Article  PubMed  Google Scholar 

  10. Fan X, Song C, Lu X, Shi Y, Yang S, Zheng F, Huang Y, Liu K, Wang H, Li Q (2021) Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2. J Alloys Compd 863:158775. https://doi.org/10.1016/j.jallcom.2021.158775

    Article  Google Scholar 

  11. Fu Y, Sun Y, Chen Z, Ying S, Wang J, Hu J (2019) Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent. Sci Total Environ 691:664–674. https://doi.org/10.1016/j.scitotenv.2019.07.153

    Article  PubMed  Google Scholar 

  12. Fu Y, Sun Y, Zheng Y, Jiang J, Yang C, Wang J, Hu J (2021) New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Sep Purif Technol 259:118112. https://doi.org/10.1016/j.seppur.2020.118112

    Article  Google Scholar 

  13. Ganesan V, Louis C, Damodaran SP (2018) Graphene oxide-wrapped magnetite nanoclusters: a recyclable functional hybrid for fast and highly efficient removal of organic dyes from wastewater. J Environ Chem Eng 6(2):2176–2190. https://doi.org/10.1016/j.jece.2018.03.026

    Article  Google Scholar 

  14. Gkika DA, Mitropoulos AC, Kyzas GZ (2022) Why reuse spent adsorbents? The latest challenges and limitations. Sci Total Environ 822:153612. https://doi.org/10.1016/j.scitotenv.2022.153612

    Article  PubMed  Google Scholar 

  15. Gupta A, Viltres H, Gupta NK (2020) Sono-adsorption of organic dyes onto CoFe2O4/Graphene oxide nanocomposite. Surf Interfaces 20:100563. https://doi.org/10.1016/j.surfin.2020.100563

    Article  Google Scholar 

  16. Gupta NK, Bae J, Kim KS (2021) From MOF-199 microrods to CuO nanoparticles for room-temperature desulfurization: regeneration and repurposing spent adsorbents as sustainable approaches. ACS Omega 6:25631–25641. https://doi.org/10.1021/acsomega.1c03712

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta NK, Ghaffari Y, Bae J, Kim KS (2020) Synthesis of coral-like α-Fe2O3 nanoparticles for dye degradation at neutral pH. J Mol Liq 301:112473. https://doi.org/10.1016/j.molliq.2020.112473

    Article  Google Scholar 

  18. Gupta NK, Ghaffari Y, Kim S, Bae J, Kim KS, Saifuddin M (2020) Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci Rep 10(1):4942. https://doi.org/10.1038/s41598-020-61930-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. He D, Zhang L, Zhao Y, Mei Y, Chen D, He S, Luo Y (2018) Recycling spent Cr adsorbents as catalyst for eliminating methylmercaptan. Environ Sci Technol 52(6):3669–3675. https://doi.org/10.1021/acs.est.7b06357

    Article  PubMed  Google Scholar 

  20. He H, Meng X, Yue Q, Yin W, Gao Y, Fang P, Shen L (2021) Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent. Chem Eng J 405:126743. https://doi.org/10.1016/j.cej.2020.126743

    Article  Google Scholar 

  21. Islam MS, Choi WS, Nam B, Yoon C, Lee H-J (2017) Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem Eng J 307:208–219. https://doi.org/10.1016/j.cej.2016.08.079

    Article  Google Scholar 

  22. Kajaste R, Hurme M (2016) Cement industry greenhouse gas emissions—management options and abatement cost. J Cleaner Prod 112:4041–4052. https://doi.org/10.1016/j.jclepro.2015.07.055

    Article  Google Scholar 

  23. Karanac M, Đolić M, Veljović Đ, Rajaković-Ognjanović V, Veličković Z, Pavićević V, Marinković A (2018) The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Manage 78:366–378. https://doi.org/10.1016/j.wasman.2018.05.052

    Article  Google Scholar 

  24. Kim E-J, Lee C-S, Chang Y-Y, Chang Y-S (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5(19):9628–9634. https://doi.org/10.1021/am402615m

    Article  PubMed  Google Scholar 

  25. Kumar ASK, Jiang S-J (2017) Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with β-cyclodextrin functionalized graphene oxide an excellent adsorption of As(V)/(III). J Mol Liq 237:387–401. https://doi.org/10.1016/j.molliq.2017.04.093

    Article  Google Scholar 

  26. Lata S, Singh PK, Samadder SR (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12(4):1461–1478. https://doi.org/10.1007/s13762-014-0714-9

    Article  Google Scholar 

  27. Lee DW, Yoo BR (2014) Advanced metal oxide (supported) catalysts: synthesis and applications. J Ind Eng Chem 20(6):3947–3959. https://doi.org/10.1016/j.jiec.2014.08.004

    Article  Google Scholar 

  28. Liu W-J, Tian K, Jiang H, Yu H-Q (2014) Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chem 16(9):4198. https://doi.org/10.1039/C4GC00599F

    Article  Google Scholar 

  29. López YC, Ortega GA, Martínez MA, Reguera E (2021) Magnetic Prussian blue derivative like absorbent cages for an efficient thallium removal. J Cleaner Prod 283:124587. https://doi.org/10.1016/j.jclepro.2020.124587

    Article  Google Scholar 

  30. Lu F, Huang C, You L, Wang J, Zhang Q (2017) Magnetic hollow carbon microspheres as a reusable adsorbent for rhodamine B removal. RSC Adv 7(38):23255–23264. https://doi.org/10.1039/C7RA03045B

    Article  Google Scholar 

  31. Ma J, Liu C (2021) Turning waste into treasure: Reuse of contaminant-laden adsorbents (Cr(vi)-Fe3O4/C) as anodes with high potassium-storage capacity. J Colloid Interface Sci 582:1107–1115. https://doi.org/10.1016/j.jcis.2020.08.110

    Article  PubMed  Google Scholar 

  32. Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265. https://doi.org/10.1016/j.jwpe.2015.07.001

    Article  Google Scholar 

  33. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  PubMed  Google Scholar 

  34. Patel H (2021) Review on solvent desorption study from exhausted adsorbent. J Saudi Chem Soc 25(8):101302. https://doi.org/10.1016/j.jscs.2021.101302

    Article  Google Scholar 

  35. Paz R, Viltres H, López YC, Kumar Gupta N, Levya C (2021) Fabrication of magnetic cerium-organic framework-activated carbon composite for charged dye removal from aqueous solutions. J Mol Liq 337:116578. https://doi.org/10.1016/j.molliq.2021.116578

    Article  Google Scholar 

  36. Rathore VK, Mondal P (2017) Stabilization of arsenic and fluoride bearing spent adsorbent in clay bricks: preparation, characterization and leaching studies. J Environ Manage 200:160–169. https://doi.org/10.1016/j.jenvman.2017.05.081

    Article  PubMed  Google Scholar 

  37. Rathore VK, Mondal P (2017) Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: multicomponent isotherms and spent adsorbent management. Ind Eng Chem Res 56(28):8081–8094. https://doi.org/10.1021/acs.iecr.7b01139

    Article  Google Scholar 

  38. Ruismäki R, Rinne T, Dańczak A, Taskinen P, Serna-Guerrero R, Jokilaakso A (2020) Integrating flotation and pyrometallurgy for recovering graphite and valuable metals from battery scrap. Metals 10(5):680. https://doi.org/10.3390/met10050680

    Article  Google Scholar 

  39. Safinejad A, Chamjangali MA, Goudarzi N, Bagherian G (2017) Synthesis and characterization of a new magnetic bio-adsorbent using walnut shell powder and its application in ultrasonic assisted removal of lead. J Environ Chem Eng 5(2):1429–1437. https://doi.org/10.1016/j.jece.2017.02.027

    Article  Google Scholar 

  40. Sahoo JK, Paikra SK, Mishra M, Sahoo H (2019) Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. J Mol Liq 282:428–440. https://doi.org/10.1016/j.molliq.2019.03.033

    Article  Google Scholar 

  41. Shen X, Zhu Z, Zhang H, Di G, Chen T, Qiu Y, Yin D (2020) Carbonaceous composite materials from calcination of azo dye-adsorbed layered double hydroxide with enhanced photocatalytic efficiency for removal of Ibuprofen in water. Environ Sci Eur 32(1):77. https://doi.org/10.1186/s12302-020-00351-4

    Article  Google Scholar 

  42. Vahidhabanu S, Adeogun AI, Babu BR (2019) Biopolymer-Grafted, magnetically tuned halloysite nanotubes as efficient and recyclable spongelike adsorbents for anionic azo dye removal. ACS Omega 4(1):2425–2436. https://doi.org/10.1021/acsomega.8b02960

    Article  PubMed  PubMed Central  Google Scholar 

  43. Venkateswarlu S, Yoon M (2015) Rapid removal of cadmium ions using green-synthesized Fe3O4 nanoparticles capped with diethyl-4-(4 amino-5-mercapto-4H-1,2,4-triazol-3-yl)phenyl phosphonate. RSC Adv 5(80):65444–65453. https://doi.org/10.1039/C5RA10628A

    Article  Google Scholar 

  44. Venkateswarlu S, Yoon M (2015) Core–shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@DAPF) for fast removal of Pb(II) from aqueous solutions. ACS Appl Mater Interfaces 7(45):25362–25372. https://doi.org/10.1021/acsami.5b07723

    Article  PubMed  Google Scholar 

  45. Venkateswarlu S, Yoon M (2015) Surfactant-free green synthesis of Fe3O4 nanoparticles capped with 3,4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(ii) ions from water. Dalton Trans 44(42):18427–18437. https://doi.org/10.1039/C5DT03155A

    Article  PubMed  Google Scholar 

  46. Verbinnen B, Block C, Van Caneghem J, Vandecasteele C (2015) Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics. Waste Manage 45:407–411. https://doi.org/10.1016/j.wasman.2015.07.006

    Article  Google Scholar 

  47. Yang C, Li J, Tan Q, Liu L, Dong Q (2017) Green process of metal recycling: coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustain Chem Eng 5(4):3524–3534. https://doi.org/10.1021/acssuschemeng.7b00245

    Article  Google Scholar 

  48. Yu J, Tang T, Cheng F, Huang D, Martin JL, Brewer CE, Grimm RL, Zhou M, Luo H (2021) Exploring spent biomass-derived adsorbents as anodes for lithium ion batteries. Mater Today Energy 19:100580. https://doi.org/10.1016/j.mtener.2020.100580

    Article  Google Scholar 

  49. Zhao F, Repo E, Sillanpää M, Meng Y, Yin D, Tang WZ (2015) Green synthesis of magnetic EDTA- and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Ind Eng Chem Res 54(4):1271–1281. https://doi.org/10.1021/ie503874x

    Article  Google Scholar 

  50. Zhou Q, Li Z, Shuang C, Li A, Zhang M, Wang M (2012) Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chem Eng J 210:350–356. https://doi.org/10.1016/j.cej.2012.08.081

    Article  Google Scholar 

  51. Zhu W, Yang X, He J, Wang X, Lu R, Zhang Z (2021) Investigation and systematic risk assessment in a typical contaminated site of hazardous waste treatment and disposal. Front Public Health 9:764788. https://doi.org/10.3389/fpubh.2021.764788

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishesh Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, N.K., Viltres, H., Leyva, C. (2024). A Perspective on Environmental and Disposal Assessment of Magnetic Sorbents. In: Sahoo, H., Sahoo, J.K. (eds) Iron Oxide-Based Nanocomposites and Nanoenzymes. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-44599-6_9

Download citation

Publish with us

Policies and ethics