Skip to main content

Iron Oxide-Based Heterogeneous Catalysts for Environmental Applications

  • Chapter
  • First Online:
Iron Oxide-Based Nanocomposites and Nanoenzymes

Part of the book series: Nanostructure Science and Technology ((NST))

  • 145 Accesses

Abstract

Heterogenous catalysts based on iron are widely used in environmental remediation reactions due to their abundance and less toxicity. The prospects of upscaling and the risks of leaching during the treatment processes are important considerations to choose iron-based materials. Particularly, various forms of iron oxides, doped forms, iron oxyhydroxides in bulk and nanoforms are increasingly used for catalysis of environmental remediation. In this chapter, we have given the overview of these minerals and general variety of their usage in environmental catalysis. The applications of these iron-based materials in environmentally important reactions such as oxidation of volatile organic compounds (VOCs) and CO, selective catalytic reduction of NOx and Fenton reaction are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses, vol 2. Wiley-vch, Weinheim

    Book  Google Scholar 

  2. Tanaka S, Kaneti YV, Septiani NLW, Dou SX, Bando Y, Hossain SA, Kim J, Yamauchi Y (2019) A review on iron oxide-based nanoarchitectures for biomedical, energy storage, and environmental applications. Small Methods 1800512:1–44

    Google Scholar 

  3. Kankaria A, Nongkynrih B, Gupta SK (2014) Indoor air pollution in India: implications on health and its control. Indian J Commun Med Off Publ Indian Assoc Prevent Soc Med 39:203–207

    Google Scholar 

  4. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42

    Article  Google Scholar 

  5. Rothenberg G (2008) Catalysis: concepts and green applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568

    Article  PubMed  Google Scholar 

  7. Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    Article  Google Scholar 

  8. Weon S, He F, Choi W (2019) Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environ Sci Nano 6:3185–3214

    Article  Google Scholar 

  9. Ollado L, Jansson I, Platero-Prats AE, Perez-Dieste V, Escudero C, Molins E, Doucastela LC et al (2017) Elucidating the photoredox nature of isolated iron active sites on MCM-41. ACS Catal 7:1646–1654

    Article  Google Scholar 

  10. Ghoussoub M, Xia M, Duchesne PA, Segal D, Ozin G (2019) Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ Sci 12:1122–1142

    Article  Google Scholar 

  11. Nair V, Muñoz-Batista MJ, Fernández-García M, Luque R, Colmenares JC (2019) Thermo-photocatalysis: environmental and energy applications. Chemsuschem 12:2098–2116

    Article  PubMed  Google Scholar 

  12. Chen C, Li Y, Yang Y, Zhang Q, Wu J, Xie X, Shi Z, Zhao X (2019) Unique mesoporous amorphous manganese iron oxide with excellent catalytic performance for benzene abatement under UV-vis-IR and IR irradiation. Environ Sci Nano 6:1233–1245

    Article  Google Scholar 

  13. Li Y, Han S, Zhang L, Yu Y (2021) Manganese-based catalysts for indoor volatile organic compounds degradation with low energy consumption and high efficiency. In: Transactions of Tianjin University, pp 1–14

    Google Scholar 

  14. Meyyappan M (2009) A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D Appl Phys 42:1–15

    Article  Google Scholar 

  15. Gohier A, Minea TM, Djouadi AM, Granier A, Dubosc M (2006) Limits of the PECVD process for single wall carbon nanotubes growth. Chem Phys Lett 421:242–245

    Article  Google Scholar 

  16. Gohier A, Minea TM, Djouadi AM, Granier A (2007) Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition. J Appl Phys 101:1–8

    Article  Google Scholar 

  17. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Plasma catalysis: synergistic effects at the nanoscale. Chem Rev 115:13408–13446

    Article  PubMed  Google Scholar 

  18. Varanda LC, Morales MP, Jafelicci M, Serna CJ (2002) Monodispersed spindle-type goethite nanoparticles from Fe(III) solutions. J Mater Chem 12:3649–3653

    Article  Google Scholar 

  19. Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Banaszak Holl MM, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599

    Article  Google Scholar 

  20. KhanFaisal I, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prevent Process Ind 13:527–545

    Article  Google Scholar 

  21. Belessi VC, Ladavos AK, Armatas GS, Pomonis PJ (2001) Kinetics of methane oxidation over La–Sr–Ce–Fe–O mixed oxide solids. Phys Chem Chem Phys 3:3856–3862

    Article  Google Scholar 

  22. Ma X, Suo X, Cao H, Guo J, Lv L, Sun H, Zheng M (2014) Deep oxidation of 1, 2-dichlorobenzene over Ti-doped iron oxide. Phys Chem Chem Phys 16:12731–12740

    Article  PubMed  Google Scholar 

  23. Wang G, Wang Y, Qin L, Zhao B, Guo L, Han J (2020) Efficient and stable degradation of chlorobenzene over a porous iron–manganese oxide supported ruthenium catalyst. Catal Sci Technol 10:7203–7216

    Article  Google Scholar 

  24. Silva H, Hernandez-Fernandez P, Baden AK, Hellstern HL, Kovyakh A, Wisaeus E, Smitshuysen T et al (2019) Supercritical flow synthesis of PtPdFe alloyed nanoparticles with enhanced low-temperature activity and thermal stability for propene oxidation under lean exhaust gas conditions. Catal Sci Technol 9:6691–6699

    Article  Google Scholar 

  25. Fan J, Niu X, Teng W, Zhang P, Zhang W, Zhao D (2020) Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. J Mater Chem A 8:17174–17184

    Article  Google Scholar 

  26. Mathew T, Suzuki K, Ikuta Y, Takahashi N, Shinjoh H (2012) Mesoporous ferrihydrite with incorporated manganese for rapid removal of organic contaminants in air. Chem Commun 48:10987–10989

    Article  Google Scholar 

  27. Sazama P, Moravkova J, Sklenak S, Vondrova A, Tabor E, Sadovska G, Pilar R (2020) Effect of the nuclearity and coordination of Cu and Fe sites in β zeolites on the oxidation of hydrocarbons. ACS Catal 10:3984–4002

    Article  Google Scholar 

  28. Li D, Li K, Xu R, Zhu X, Wei Y, Tian D, Cheng X, Wang H (2019) Enhanced CH4 and CO Oxidation over Ce1–xFe xO2−δ hybrid catalysts by tuning the lattice distortion and the state of surface iron species. ACS Appl Mater Interf 11:19227–19241

    Article  Google Scholar 

  29. House MP, Carley AF, Echeverria-Valda R, Bowker M (2008) Effect of varying the cation ratio within iron molybdate catalysts for the selective oxidation of methanol. J Phys Chem C 112:4333–4341

    Article  Google Scholar 

  30. Mao J, He D, Zhao Y, Zhang L, Luo Y (2022) Sulfur-resistance iron catalyst in sulfur-containing VOCs abatement modulated through H2 reduction. Appl Surf Sci 584(152631):1–11

    Google Scholar 

  31. Xue T, Li R, Gao Y, Wang Q (2020) Iron mesh-supported vertically aligned Co–Fe layered double oxide as a novel monolithic catalyst for catalytic oxidation of toluene. Chem Eng J 384:1–35

    Article  Google Scholar 

  32. Bonelli R, Albonetti S, Morandi V, Ortolani L, Riccobene PM, Scirè S, Zacchini S (2011) Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Appl Catal A Gen 395:10–18

    Article  Google Scholar 

  33. Guo M, Li K, Zhang H, Min X, Liang J, Hu X, Guo W, Jia J, Sun T (2020) Promotional removal of oxygenated VOC over manganese-based multi oxides from spent lithium-ions manganate batteries: modification with Fe, Bi and Ce dopants. Sci Total Environ 740:1–43

    Article  Google Scholar 

  34. Xia H, Chen Y, Wu J, Shao S, Chen G, Zhang H, Dai Q, Wang X (2021) Oxidative decomposition of chlorobenzene over iron titanate catalysts: the critical roles of oxygen vacancies and adsorption geometries. Appl Catal A Gen 617:1–9

    Article  Google Scholar 

  35. Xia Y, Wang Z, Feng Y, Xie S, Liu Y, Dai H, Deng J (2020) In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catal Today 351:30–36

    Article  Google Scholar 

  36. Das DP, Parida KM (2007) Fe(III) oxide pillared titanium phosphate (TiP): an effective catalyst for deep oxidation of VOCs. J Mol Catal A Chem 276:17–23

    Article  Google Scholar 

  37. Sanchis R, Dejoz A, Vázquez I, Vilarrasa-García E, Jiménez-Jiménez J, Rodríguez-Castellón E, López Nieto JM, Solsona B (2019) Ferric sludge derived from the process of water purification as an efficient catalyst and/or support for the removal of volatile organic compounds. Chemosphere 219:286–295

    Article  PubMed  Google Scholar 

  38. Xue T, Li R, Zhang Z, Gao Y, Wang Q (2020) Preparation of MnO2 decorated Co3Fe1Ox powder/monolithic catalyst with improved catalytic activity for toluene oxidation. J Environ Sci 96:194–203

    Article  Google Scholar 

  39. Tsoncheva T, Ivanova R, Henych J, Velinov N, Kormunda M, Dimitrov M, Paneva D, Slušná M, Mitov I, Štengl V (2016) Iron modified titanium–hafnium binary oxides as catalysts in total oxidation of ethyl acetate. Catal Commun 81:14–19

    Article  Google Scholar 

  40. Li D, Li C, Suzuki K (2013) Catalytic oxidation of VOCs over Al-and Fe-pillared montmorillonite. Appl Clay Sci 77:56–60

    Article  Google Scholar 

  41. Durán FG, Barbero BP, Cadús LE, Rojas C, Centeno MA, Odriozola JA (2009) Manganese and iron oxides as combustion catalysts of volatile organic compounds. Appl Catal B Environ 92:194–201

    Article  Google Scholar 

  42. Nogueira FGE, Lopes JH, Silva AC, Lago RM, Fabris JD, Oliveira LCA (2011) Catalysts based on clay and iron oxide for oxidation of toluene. Appl Clay Sci 51:385–389

    Article  Google Scholar 

  43. Yang K, Liu Y, Deng J, Zhao X, Yang J, Han Z, Hou Z, Dai H (2019) Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: highly active catalysts for benzene combustion. Appl Catal B Environ 244:650–659

    Article  Google Scholar 

  44. Minicò S, Scirè S, Crisafulli C, Maggiore R, Galvagno S (2000) Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Appl Catal B Environ 28:245–251

    Article  Google Scholar 

  45. Wang HC, Liang HS, Chang MB (2011) Chlorobenzene oxidation using ozone over iron oxide and manganese oxide catalysts. J Hazard Mater 186:1781–1787

    Article  PubMed  Google Scholar 

  46. Tsoncheva T, Ivanova R, Dimitrov M, Paneva D, Kovacheva D, Henych J, Vomáčka P et al (2016) Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation. Appl Catal A Gen 528:24–35

    Article  Google Scholar 

  47. Wang Y, Wang G, Deng W, Han J, Qin L, Zhao B, Guo L, Xing F (2020) Study on the structure-activity relationship of Fe–Mn oxide catalysts for chlorobenzene catalytic combustion. Chem Eng J 395(125172):1–13

    Google Scholar 

  48. Xia Y, Dai H, Jiang H, Zhang L, Deng J, Liu Y (2011) Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. J Hazard Mater 186:84–91

    Article  PubMed  Google Scholar 

  49. Morales MR, Barbero BP, Cadús LE (2007) Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts. Appl Catal B Environ 74:1–10

    Article  Google Scholar 

  50. Hammiche-Bellal Y, Zouaoui-Mahzoul N, Lounas I, Benadda A, Benrabaa R, Auroux A, Meddour-Boukhobza L, Djadoun A (2017) Cobalt and cobalt–iron spinel oxides as bulk and silica supported catalysts in the ethanol combustion reaction. J Mol Catal A Chem 426:97–106

    Article  Google Scholar 

  51. Li Z, Yan Q, Jiang Q, Gao Y, Xue T, Li R, Liu Y, Wang Q (2020) Oxygen vacancy mediated CuyCo3−yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Appl Catal B Environ 269:1–13

    Article  Google Scholar 

  52. Djinović P, Ristić A, Žumbar T, Dasireddy VDBC, Rangus M, Dražić M, Popova M, Likozar B, Logar MZ, Tušar NN (2020) Synergistic effect of CuO nanocrystals and Cu-oxo-Fe clusters on silica support in promotion of total catalytic oxidation of toluene as a model volatile organic air pollutant. Appl Catal B Environ 268:1–30

    Article  Google Scholar 

  53. Li C, Shen Y, Jia M, Sheng S, Adebajo MO, Zhu H (2008) Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Catal Commun 9:355–361

    Article  Google Scholar 

  54. Sanchis R, Cecilia JA, Soriano MD, Vázquez MI, Dejoz A, Nieto JML, Rodríguez Castellón E, Solsona B (2018) Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chem Eng J 334:1159–1168

    Article  Google Scholar 

  55. Ma X, Wen J, Guo H, Ren G (2020) Facile template fabrication of Fe–Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene. Chem Eng J 382:1–41

    Article  Google Scholar 

  56. Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Hydrolysis driving redox reaction to synthesize Mn–Fe binary oxides as highly active catalysts for the removal of toluene. Chem Eng J 330:281–293

    Article  Google Scholar 

  57. Liang X, Qi F, Liu P, Wei G, Su X, Ma L, He H et al (2016) Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: the effect of Fe on catalytic activity. Appl Clay Sci 132:96–104

    Article  Google Scholar 

  58. Collado L, Jansson I, Platero-Prats AE, Perez-Dieste V (2017) Carlos eof isolated iron active sites on MCM-41. ACS Catal 7:1646–1654

    Article  Google Scholar 

  59. Saqlain S, Cha BJ, Kim SY, Ahn TK, Park C, Oh JM, Jeong EC, Seo HO, Kim YD (2020) Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: fundamental studies towards large-scale production and applications. Appl Surf Sci 505:1–9

    Article  Google Scholar 

  60. Soltani T, Lee BK (2017) Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO3 magnetic nanoparticles with fast sonochemical synthesis. Photochem Photobiol Sci 16:86–95

    Article  PubMed  Google Scholar 

  61. Chen X, Zhu H-Y, Zhao J-C, Zheng Z-F, Gao X-P (2008) Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chem 120:5433–5436

    Article  Google Scholar 

  62. Wu H, Wang L (2014) Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Appl Surf Sci 288:398–404

    Article  Google Scholar 

  63. Tabari T, Singh D, Jamali SS (2017) Enhanced photocatalytic activity of mesoporous ZnFe2O4 nanoparticles towards gaseous benzene under visible light irradiation. J Environ Chem Eng 5:931–939

    Article  Google Scholar 

  64. Kim SY, Saqlain S, Cha BJ, Zhao S, Seo HO, Kim YD (2020) Annealing temperature-dependent effects of Fe-loading on the visible light-driven photocatalytic activity of rutile TiO2 nanoparticles and their applicability for air purification. Catalysts 10:1–18

    Article  Google Scholar 

  65. Low W, Boonamnuayvitaya V (2013) Enhancing the photocatalytic activity of TiO2 co-doping of graphene—Fe3+ ions for formaldehyde removal. J Environ Manag 127:142–149

    Article  Google Scholar 

  66. Wang H, Raziq F, Qu Y, Qin C, Wang J, Jing L (2015) Role of quaternary N in N-doped graphene—Fe2O3 nanocomposites as efficient photocatalysts for CO2 reduction and acetaldehyde degradation. RSC Adv 5:85061–85064

    Article  Google Scholar 

  67. Liu J, Liu X, Chen J, Li X, Zhong F (2021) Plasma-catalytic oxidation of toluene on Fe2O3/sepiolite catalyst in DDBD reactor. J Phys D Appl Phys 54(475201):1–13

    Google Scholar 

  68. Trinh QH, Mok YS (2015) Non-thermal plasma combined with cordierite-supported Mn and Fe based catalysts for the decomposition of diethylether. Catalysts 5:800–814

    Article  Google Scholar 

  69. Sultana S, Ye Z, Veerapandian SKP, Löfberg A, De Geyter N, Morent R, Giraudon JM, Lamonier JF (2018) Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catal Today 307:20–28

    Article  Google Scholar 

  70. Cai Y, Zhu X, Hu W, Zheng C, Yang Y, Chen M, Gao X (2019) Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M= Mn, Fe, and Co) perovskite catalysts. J Ind Eng Chem 70:447–452

    Article  Google Scholar 

  71. Qin L, Zhao B, Chen W, Liu X, Han J (2022) Refluxing-coprecipitation to synthesize Fex–Mny/γ-Al2O3 catalyst for toluene removal in a nonthermal plasma-catalysis reactor. Mol Catal 517:1–14

    Google Scholar 

  72. Liu J, Liu X, Chen J, Li X, Ma T, Zhong F (2021) Investigation of ZrMnFe/sepiolite catalysts on toluene degradation in a one-stage plasma-catalysis system. Catalysts 11(828):1–12

    Google Scholar 

  73. Al Soubaihi RM, Saoud KM, Dutta J (2018) Critical review of low-temperature CO oxidation and hysteresis phenomenon on heterogeneous catalysts. Catalysts 8:1–19

    Article  Google Scholar 

  74. Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27–36

    Article  Google Scholar 

  75. Pan C-J, Tsai MC, Su WN, Rick J, Akalework NG, Agegnehu AK, Cheng SY, Hwang BJ (2017) Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. J Taiwan Instit Chem Eng 74:154–186

    Article  Google Scholar 

  76. Sun YN, Qin ZH, Lewandowski M, Carrasco E, Sterrer M, Shaikhutdinov S, Freund HJ (2009) Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J Catal 266:359–368

    Article  Google Scholar 

  77. Carrettin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation. Chem A Eur J 13:7771–7779

    Article  Google Scholar 

  78. Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Low-temperature CO oxidation over nanosized Fe–Co mixed oxide catalysts: effect of calcination temperature and operational conditions. Chem Eng Sci 94:237–244

    Article  Google Scholar 

  79. Ciambelli P, Stefano Cimino S, De Rossi LL, Minelli G, Porta P, Russo G (2001) AFeO3 (A= La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl Catal B Environ 29:239–250

    Article  Google Scholar 

  80. Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Bimetallic nanoparticles of PtM (M= Au, Cu, Ni) supported on iron oxide: radiolytic synthesis and CO oxidation catalysis. Appl Catal A Gen 387:195–202

    Article  Google Scholar 

  81. Zheng B, Gan T, Shi S, Wang J, Zhang W, Zhou X, Zou Y, Yan W, Liu G (2021) Exsolution of iron oxide on LaFeO3 Perovskite: a robust heterostructured support for constructing self-adjustable Pt-based room-temperature CO oxidation catalysts. ACS Appl Mater Interf 13:27029–27040

    Article  Google Scholar 

  82. Moreau F, Bond GC (2006) CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catal Today 114:362–368

    Article  Google Scholar 

  83. Cheng T, Fang Z, Hu Q, Han K, Yang X, Zhang Y (2007) Low-temperature CO oxidation over CuO/Fe2O3 catalysts. Catal Commun 8:1167–1171

    Article  Google Scholar 

  84. Cao J, Wang Y, Ma T, Liu Y, Yuan Z (2011) Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation. J Nat Gas Chem 20:669–676

    Article  Google Scholar 

  85. Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Study of Fe–Co mixed metal oxide nanoparticles in the catalytic low-temperature CO oxidation. Process Saf Environ Protect 91:489–494

    Article  Google Scholar 

  86. Liu G, Walsh AG, Zhang P (2020) Synergism of iron and platinum species for low-temperature CO oxidation: from two-dimensional surface to nanoparticle and single-atom catalysts. J Phys Chem Lett 11:2219–2229

    Article  PubMed  Google Scholar 

  87. Kast P, Friedrich M, Teschner D, Girgsdies F, Lunkenbein T, D’Alnoncourt RN, Behrens M, Schlögl R (2015) CO oxidation as a test reaction for strong metal–support interaction in nanostructured Pd/FeOx powder catalysts. Appl Catal A Gen 502:8–17

    Article  Google Scholar 

  88. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B Environ 43:151–162

    Article  Google Scholar 

  89. Wu Y, Dong L, Li B (2018) Effect of iron on physicochemical properties: enhanced catalytic performance for novel Fe2O3 modified CuO/Ti0.5Sn0.5O2 in low temperature CO oxidation. Mol Catal 456:65–74

    Article  Google Scholar 

  90. Carriazo JG, Martinez LM, Odriozola JA, Moreno S, Molina R, Centeno MA (2007) Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction. Appl Catal B Environ 72:157–165

    Article  Google Scholar 

  91. Carabineiro SAC, Bogdanchikova N, Tavares PB, Figueiredo JL (2012) Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide. RSC Adv 2:2957–2965

    Article  Google Scholar 

  92. Hinojosa-Reyes M, Camposeco-Solis R, Zanella R, Rodríguez-González V, Ruiz F (2018) Gold nanoparticle: enhanced CO oxidation at low temperatures by using Fe-doped TiO2 as support. Catal Lett 148:383–396

    Article  Google Scholar 

  93. Falls A, Seinfeld J (1978) Continued development of a kinetic mechanism for photochemical smog. Environ Sci Technol 12:1398–1406

    Article  Google Scholar 

  94. Wang J, Tian GL, Cui SP, Wang YL (2018) Different precipitant preparation of nickel-doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3. Mater Sci Forum 913:976–984

    Article  Google Scholar 

  95. Dumesic JA, Topsøe N-Y, Topsøe H, Chen Y, Slabiak T (1996) Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania. J Catal 163:409–417

    Article  Google Scholar 

  96. Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B Environ 18:1–36

    Article  Google Scholar 

  97. Tounsi H, Djemal S, Petitto C, Delahay G (2011) Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 107:158–163

    Article  Google Scholar 

  98. Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B Environ 19:103–117

    Article  Google Scholar 

  99. Cai S, Zhang D, Zhang L, Huang L, Li H, Gao R, Shi L, Zhang J (2014) Comparative study of 3D ordered macroporous Ce0.75Zr0.2M0.05O2 (M = Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3. Catal Sci Technol 4:93–101

    Article  Google Scholar 

  100. Chen Z, Wang F, Li H, Yang Q, Wang L, Li X (2012) Low-temperature selective catalytic reduction of NOx with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Ind Eng Chem Res 51:202–212

    Article  Google Scholar 

  101. Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T (2010) Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization. Appl Catal B 96:408–420

    Article  Google Scholar 

  102. Yu J, Guo F, Wang Y, Zhu J, Liu Y, Su F, Gao S, Xu G (2010) Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Appl Catal B 95:160–168

    Article  Google Scholar 

  103. Cai S, Zhang D, Shi L, Xu J, Zhang L, Huang L, Li H, Zhang J (2014) Porous Ni–Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts. Nanoscale 6:7346–7353

    Article  PubMed  Google Scholar 

  104. Zhang S, Zhang B, Liu B, Sun S (2017) A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: reaction mechanism and catalyst deactivation. RSC Adv 7:26226–26242

    Article  Google Scholar 

  105. Li X, Li J, Peng Y, Zhang T, Liu S, Hao J (2015) Selective catalytic reduction of NO with NH3 over novel iron–tungsten mixed oxide catalyst in a broad temperature range. Catal Sci Technol 5:4556–4564

    Article  Google Scholar 

  106. Li Y, Wan Y, Li Y, Zhan S, Guan Q, Tian Y (2016) Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets. ACS Appl Mater Interf 8:5224–5233

    Article  Google Scholar 

  107. Yang S, Qi F, Xiong S, Dang H, Liao Y, Wong PK, Li J (2016) MnOx supported on Fe–Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity. Appl Catal B Environ 181:570–580

    Article  Google Scholar 

  108. Ko S, Tang X, Gao F, Wang C, Liu H, Liu Y (2022) Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: influence of thermal treatment temperature. J Solid State Chem 307:1–9

    Article  Google Scholar 

  109. Zhan S, Qiu M, Yang S, Zhu D, Yu H, Li Y (2014) Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3. J Mater Chem A 2:20486–20493

    Article  Google Scholar 

  110. Li Y, Li Y, Wang P, Hu W, Zhang S, Shi Q, Zhan S (2017) Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chem Eng J 330:213–222

    Article  Google Scholar 

  111. Gao C, Xiao B, Shi JW, He C, Wang B, Ma D, Cheng Y, Niu C (2019) Comprehensive understanding the promoting effect of Dy-doping on MnFeOx nanowires for the low-temperature NH3-SCR of NOx: an experimental and theoretical study. J Catal 380:55–67

    Article  Google Scholar 

  112. Shao C, Liu X, Meng D, Xu Q, Guo Y, Guo Y, Zhan W, Wang L, Lu G (2016) Catalytic performance of Co–Fe mixed oxide for NH3-SCR reaction and the promotional role of cobalt. RSC Adv 6:66169–66179

    Article  Google Scholar 

  113. Sun J, Lu Y, Zhang L, Ge C, Tang C, Wan H, Dong L (2017) Comparative study of different doped metal cations on the reduction, acidity, and activity of Fe9M1Ox (M= Ti4+, Ce4+/3+, Al3+) catalysts for NH3-SCR reaction. Ind Eng Chem Res 56:12101–12110

    Article  Google Scholar 

  114. Wang H, Ning P, Zhang Y, Ma Y, Wang J, Wang L, Zhang Q (2020) Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR. J Hazard Mater 388(121812):1–35

    Google Scholar 

  115. Wei Y, Chen Y, Wang R (2018) Rare earth salt of 12-tungstophosphoric acid supported on iron oxide as a catalyst for selective catalytic reduction of NOx. Fuel Process Technol 178:262–270

    Article  Google Scholar 

  116. Yao H, Cai S, Yang B, Han L, Wang P, Li H, Yan T, Shi L, Zhang D (2020) In situ decorated MOF-derived Mn–Fe oxides on Fe mesh as novel monolithic catalysts for NOx reduction. New J Chem 44:2357–2366

    Article  Google Scholar 

  117. Jia J, Ran R, Guo X, Wu X, Chen W, Weng D (2019) Enhanced low-temperature NO oxidation by iron-modified MnO2 catalysts. Catal Commun 119:139–143

    Article  Google Scholar 

  118. Zhang Y, Xu Z, Wang X, Lu X, Zheng Y (2015) Fabrication of Mn-FeOx/CNTs catalysts for low-temperature NO reduction with NH3. NANO 10:1–9

    Article  Google Scholar 

  119. Wei L, Li X, Mu J, Wang X, Fan S, Yin Z, Tadé MO, Liu S (2020) Rationally tailored redox properties of a mesoporous Mn–Fe spinel nanostructure for boosting low-temperature selective catalytic reduction of NOx with NH3. ACS Sustainable Chem Eng 8:17727–17739

    Article  Google Scholar 

  120. Ochando-Pulido JM, Pimentel-Moral S, Verardo V, Martinez-Ferez A (2017) A focus on advanced physicochemical processes for olive mill wastewater treatment. Separ Purif Technol 179:161–174

    Article  Google Scholar 

  121. Karthikeyan S, Titus A, Gnanamani A, Mandal AB, Sekaran G (2011) Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 281:438–445

    Article  Google Scholar 

  122. Kishimoto N, Kitamura T, Kato M, Otsu H (2013) Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system. Water Res 47:1919–1927

    Article  PubMed  Google Scholar 

  123. Babuponnusami A, Muthukumar K (2014) A review of Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  Google Scholar 

  124. Garcia-Segura S, Bellotindos LM, Huang Y-H, Brillas E, Lu M-C (2016) Fluidized-bed Fenton process as alternative wastewater treatment technology: a review. J Taiwan Inst Chem Eng 67:211–225

    Article  Google Scholar 

  125. Queiros S, Morais V, Rodrigues CSD, Maldonado-Hodar FJ, Madeira LM (2015) Heterogeneous Fenton’s oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor. Separ Purif Technol 141:235–245

    Article  Google Scholar 

  126. Vorontsov AV (2019) Advancing Fenton and photo-Fenton water treatment through the catalyst design. J Hazard Mater 372:103–112

    Article  PubMed  Google Scholar 

  127. Poza-Nogueiras V, Rosales E, Pazos M, Sanroman MA (2018) Current advances and trends in electro-Fenton process using heterogeneous catalysts: a review. Chemosphere 201:399–416

    Article  PubMed  Google Scholar 

  128. Dulova N, Trapido M, Dulov A (2011) Catalytic degradation of picric acid by heterogeneous Fenton: based processes. Environ Technol 32:439–446

    Article  PubMed  Google Scholar 

  129. Casado J (2019) Towards industrial implementation of electro-Fenton and derived technologies for wastewater treatment: a review. J Environ Chem Eng 7:1–62

    Article  Google Scholar 

  130. He Z, Gao C, Qian M, Shi Y, Chen J, Song S (2014) Electro-Fenton process catalyzed by Fe3O4 magnetic nanoparticles for degradation of C.I. reactive blue 19 in aqueous solution: operating conditions, influence, and mechanism. Ind Eng Chem Res 53:3435–3447

    Article  Google Scholar 

  131. Ben Hafaiedh N, Fourcade F, Bellakhal N, Amrane A (2020) Iron oxide nanoparticles as heterogeneous electro-Fenton catalysts for the removal of AR18 azo dye. Environ Technol 41:2146–2153

    Article  PubMed  Google Scholar 

  132. Baiju A, Gandhimathi R, Ramesh ST, Nidheesh PV (2018) Combined heterogeneous electro-Fenton and biological process for the treatment of stabilized landfill leachate. J Environ Manag 210:328–337

    Article  Google Scholar 

  133. Huang B, Qi C, Yang Z, Guo Q, Chen W, Zeng G, Lei C (2017) Pd/Fe3O4 nanocatalysts for highly effective and simultaneous removal of humic acids and Cr(VI) by electro-Fenton with H2O2 in situ electro-generated on the catalyst surface. J Catal 352:337–350

    Article  Google Scholar 

  134. Barhoumi N, Olvera-Vargas H, Oturan N, Huguenot D, Gadri A, Ammar S, Brillas E, Oturan MA (2017) Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl Catal B Environ 209:637–647

    Article  Google Scholar 

  135. Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257

    Google Scholar 

Download references

Acknowledgements

The authors thank IIT Palakkad for the infrastructure and support. The author S. Anaina 2nd year BS–MS student from IISER Berhampur worked as an intern for two months in the group of Dr. Dinesh Jagadeesan at IIT Palakkad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jagadeesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roshni, M., Anaina, S., Jagadeesan, D. (2024). Iron Oxide-Based Heterogeneous Catalysts for Environmental Applications. In: Sahoo, H., Sahoo, J.K. (eds) Iron Oxide-Based Nanocomposites and Nanoenzymes. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-44599-6_13

Download citation

Publish with us

Policies and ethics