Skip to main content

Temporally Consistent Segmentations from Sparsely Labeled Echocardiograms Using Image Registration for Pseudo-labels Generation

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2023)

Abstract

The segmentation of the left ventricle in echocardiograms is crucial for diagnosing cardiovascular diseases. However, current deep learning methods typically focus on 2D segmentations and overlook the temporal information in ultrasound sequences. This choice might be caused by the scarcity of manual annotations, which are typically limited to end-diastole and end-systole frames. Therefore, we propose a method that trains temporally consistent segmentation models from sparsely labeled echocardiograms. We leverage image registration to generate pseudo-labels for unlabeled frames enabling the training of 3D models. Using a state-of-the-art convolutional neural network, 3D nnU-Net, we delineate the left ventricle (LV) cavity, LV myocardium, and left atrium. Evaluation on the CAMUS dataset demonstrates the quality and robustness of the generated pseudo-labels, serving as effective training data for subsequent segmentation. Additionally, we evaluate the segmentation model both intrinsically, measuring accuracy and temporal consistency, and extrinsically, estimating cardiac function markers like ejection fraction and left ventricular volumes. The results show accurate delineation of the cardiac structures that evolves smoothly over time, effectively demonstrating the model’s accuracy and temporal consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To aid readability, it may be worth specifying that “segmentations” and “labels” are used interchangeably throughout the paper.

  2. 2.

    The code is publicly available at https://github.com/matteo-tafuro/temporally-consistent-echosegmentation.

References

  1. Armstrong, A.C., et al.: Quality control and reproducibility in M-mode, two-dimensional, and speckle tracking echocardiography acquisition and analysis: the CARDIA study, year 25 examination experience. Echocardiography 32(8), 1233–1240 (2014). https://doi.org/10.1111/echo.12832

    Article  Google Scholar 

  2. Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7 (2020). https://doi.org/10.3389/fcvm.2020.00025

  3. Chen, S., Ma, K., Zheng, Y.: Tan: Temporal affine network for real-time left ventricle anatomical structure analysis based on 2D ultrasound videos. ArXiv (2019). https://doi.org/10.48550/ARXIV.1904.00631

  4. Chen, Y., Zhang, X., Haggerty, C.M., Stough, J.V.: Assessing the generalizability of temporally coherent echocardiography video segmentation. In: Išgum, I., Landman, B.A. (eds.) Medical Imaging 2021: Image Processing. vol. 11596, p. 115961O. International Society for Optics and Photonics, SPIE (2021). https://doi.org/10.1117/12.2580874

  5. Dai, W., Li, X., Ding, X., Cheng, K.T.: Cyclical self-supervision for semi-supervised ejection fraction prediction from echocardiogram videos. IEEE Trans. Med. Imaging 42(5), 1446–1461 (2023). https://doi.org/10.1109/TMI.2022.3229136

    Article  Google Scholar 

  6. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019). https://doi.org/10.1016/j.media.2018.11.010

    Article  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  8. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019). https://doi.org/10.1109/tmi.2019.2900516

    Article  Google Scholar 

  9. Li, M., Wang, C., Zhang, H., Yang, G.: MV-RAN: multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis. Comput. Biol. Med. 120, 103728 (2020). https://doi.org/10.1016/j.compbiomed.2020.103728

    Article  Google Scholar 

  10. Moal, O., et al.: Explicit and automatic ejection fraction assessment on 2D cardiac ultrasound with a deep learning-based approach. Comput. Biol. Med. 146, 105637 (2022). https://doi.org/10.1016/j.compbiomed.2022.105637

    Article  Google Scholar 

  11. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020). https://doi.org/10.1038/s41586-020-2145-8

    Article  Google Scholar 

  12. Painchaud, N., Duchateau, N., Bernard, O., Jodoin, P.M.: Echocardiography segmentation with enforced temporal consistency. IEEE Trans. Med. Imaging 41(10), 2867–2878 (2022). https://doi.org/10.1109/TMI.2022.3173669

    Article  Google Scholar 

  13. Rueckert, D.: Nonrigid registration using free-form deformations: application to breast MRI images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999). https://doi.org/10.1109/42.796284

    Article  Google Scholar 

  14. Schuuring, M.J., Išgum, I., Cosyns, B., Chamuleau, S.A.J., Bouma, B.J.: Routine echocardiography and artificial intelligence solutions. Front. Cardiovasc. Med. 8, 648877 (2021)

    Article  Google Scholar 

  15. Sfakianakis, C., Simantiris, G., Tziritas, G.: GUDU: geometrically-constrained ultrasound data augmentation in U-net for echocardiography semantic segmentation. Biomed. Signal Process. Control 82, 104557 (2023). https://doi.org/10.1016/j.bspc.2022.104557

    Article  Google Scholar 

  16. Thomas, L., Marwick, T.H., Popescu, B.A., Donal, E., Badano, L.P.: Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73(15), 1961–1977 (2019). https://doi.org/10.1016/j.jacc.2019.01.059

    Article  Google Scholar 

  17. Wang, C., et al.: Pseudo-labeled auto-curriculum learning for semi-supervised keypoint localization (2022)

    Google Scholar 

  18. Wei, H., et al.: Temporal-consistent segmentation of echocardiography with co-learning from appearance and shape. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 623–632. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_60

    Chapter  Google Scholar 

  19. Wei, H., Ma, J., Zhou, Y., Xue, W., Ni, D.: Co-learning of appearance and shape for precise ejection fraction estimation from echocardiographic sequences. Med. Image Anal. 84, 102686 (2023). https://doi.org/10.1016/j.media.2022.102686

    Article  Google Scholar 

  20. Xia, Y., et al.: 3D semi-supervised learning with uncertainty-aware multi-view co-training (2020)

    Google Scholar 

  21. Xue, W., Cao, H., Ma, J., Bai, T., Wang, T., Ni, D.: Improved segmentation of echocardiography with orientation-congruency of optical flow and motion-enhanced segmentation. IEEE J. Biomed. Health Inform. 26(12), 6105–6115 (2022). https://doi.org/10.1109/JBHI.2022.3221429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Tafuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tafuro, M., Jansen, G., Išgum, I. (2023). Temporally Consistent Segmentations from Sparsely Labeled Echocardiograms Using Image Registration for Pseudo-labels Generation. In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds) Simplifying Medical Ultrasound. ASMUS 2023. Lecture Notes in Computer Science, vol 14337. Springer, Cham. https://doi.org/10.1007/978-3-031-44521-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44521-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44520-0

  • Online ISBN: 978-3-031-44521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics