Abstract
In this work we show that the discrete logarithm problem in the ideal class group of the multiquadratic field \(K = \mathbb {Q}(\sqrt{d_1}, \ldots , \sqrt{d_n})\) of degree \(m = 2^n\) can be solved in classical time \(e^{\widetilde{\mathcal {O}}(\max (\log {m},\sqrt{\log {D}}))}\) using an adaptation of Pohlig-Hellman approach, where \(D = d_1 \cdot \ldots \cdot d_n\). This complexity is for the case when the factorization of the target ideal norm is not given. Thanks to our implementation, we provide numerical examples of discrete logarithm computation in real and imaginary number fields.
Keywords
- multiquadratic field
- ideal class group
- norm relation
- discrete logarithm problem
- complexity
The research was funded by the Russian Science Foundation (project No. 22-41-04411, https://rscf.ru/en/project/22-41-04411/).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Source code is available here: https://github.com/novoselov-sa/mqCLDL.
References
Bach, E.: Explicit bounds for primality testing and related problems. Math. Comput. 55(191), 355–380 (1990)
Bauch, J., Bernstein, D.J., de Valence, H., Lange, T., van Vredendaal, C.: Short generators without quantum computers: the case of multiquadratics. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 27–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_2
Bernard, O., Lesavourey, A., Nguyen, T.H., Roux-Langlois, A.: Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. Cryptology ePrint Archive, Report 2021/1384 (2021). https://ia.cr/2021/1384
Biasse, J.F., Erukulangara, M.R., Fieker, C., Hofmann, T., Youmans, W.: Mildly short vectors in ideals of cyclotomic fields without quantum computers. Math. Cryptol. 2(1), 84–107 (2022)
Biasse, J.F., Fieker, C., Hofmann, T., Page, A.: Norm relations and computational problems in number fields. J. Lond. Math. Soc. 105(4), 2373–2414 (2022)
Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 893–902. SIAM (2016)
Biasse, J.F., Van Vredendaal, C.: Fast multiquadratic S-unit computation and application to the calculation of class groups. Open Book Ser. 2(1), 103–118 (2019). https://scarecryptow.org/publications/multiclass.html
Buchmann, J., Düllmann, S.: On the computation of discrete logarithms in class groups. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 134–139. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_9
Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning “factorisatio numerorum”. J. Number Theory 17(1), 1–28 (1983)
Chatelain, D.: Bases des entiers des corps composés par des extensions quadratiques de Q. Ann. Sci. Univ. Besançon Math. (3) (6), 38 (1973)
Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-662-02945-9
Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_12
Cramer, R., Ducas, L., Wesolowski, B.: Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. J. ACM 68(2) (2021)
Dixon, J.D.: Exact solution of linear equations using P-Adic expansions. Numer. Math. 40(1), 137–141 (1982)
Grenié, L., Molteni, G.: Explicit bounds for generators of the class group. Math. Comput. 87(313), 2483–2511 (2018)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
Lesavourey, A., Plantard, T., Susilo, W.: Short principal ideal problem in multicubic fields. J. Math. Cryptol. 14(1), 359–392 (2020)
Lesavourey, A., Plantard, T., Susilo, W.: On the Short Principal Ideal Problem over some real Kummer fields. Cryptology ePrint Archive, Paper 2021/1623 (2021). https://eprint.iacr.org/2021/1623
Menezes, A.J., Katz, J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)
Novoselov, S.A.: On ideal class group computation of imaginary multiquadratic fields. Prikl. Diskr. Mat. (58), 22–30 (2022). https://github.com/novoselov-sa/multiclass-im
Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110 (1978)
Pomerance, C.: Elementary thoughts on discrete logarithms. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, vol. 44 (2008). https://math.dartmouth.edu/~carlp/PDF/dltalk4.pdf
Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000)
Teske, E.: The Pohlig-Hellman method generalized for group structure computation. J. Symb. Comput. 27(6), 521–534 (1999)
The Sage Developers: Sagemath, the Sage Mathematics Software System (Version 10.0) (2023). https://www.sagemath.org
Vollmer, U.: Asymptotically fast discrete logarithms in quadratic number fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 581–594. Springer, Heidelberg (2000). https://doi.org/10.1007/10722028_39
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Novoselov, S.A. (2023). On the Discrete Logarithm Problem in the Ideal Class Group of Multiquadratic Fields. In: Aly, A., Tibouchi, M. (eds) Progress in Cryptology – LATINCRYPT 2023. LATINCRYPT 2023. Lecture Notes in Computer Science, vol 14168. Springer, Cham. https://doi.org/10.1007/978-3-031-44469-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-44469-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44468-5
Online ISBN: 978-3-031-44469-2
eBook Packages: Computer ScienceComputer Science (R0)