Skip to main content

On the Discrete Logarithm Problem in the Ideal Class Group of Multiquadratic Fields

  • 109 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 14168)


In this work we show that the discrete logarithm problem in the ideal class group of the multiquadratic field \(K = \mathbb {Q}(\sqrt{d_1}, \ldots , \sqrt{d_n})\) of degree \(m = 2^n\) can be solved in classical time \(e^{\widetilde{\mathcal {O}}(\max (\log {m},\sqrt{\log {D}}))}\) using an adaptation of Pohlig-Hellman approach, where \(D = d_1 \cdot \ldots \cdot d_n\). This complexity is for the case when the factorization of the target ideal norm is not given. Thanks to our implementation, we provide numerical examples of discrete logarithm computation in real and imaginary number fields.


  • multiquadratic field
  • ideal class group
  • norm relation
  • discrete logarithm problem
  • complexity

The research was funded by the Russian Science Foundation (project No. 22-41-04411,

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

    Source code is available here:


  1. Bach, E.: Explicit bounds for primality testing and related problems. Math. Comput. 55(191), 355–380 (1990)

    CrossRef  MathSciNet  Google Scholar 

  2. Bauch, J., Bernstein, D.J., de Valence, H., Lange, T., van Vredendaal, C.: Short generators without quantum computers: the case of multiquadratics. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 27–59. Springer, Cham (2017).

    CrossRef  Google Scholar 

  3. Bernard, O., Lesavourey, A., Nguyen, T.H., Roux-Langlois, A.: Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. Cryptology ePrint Archive, Report 2021/1384 (2021).

  4. Biasse, J.F., Erukulangara, M.R., Fieker, C., Hofmann, T., Youmans, W.: Mildly short vectors in ideals of cyclotomic fields without quantum computers. Math. Cryptol. 2(1), 84–107 (2022)

    Google Scholar 

  5. Biasse, J.F., Fieker, C., Hofmann, T., Page, A.: Norm relations and computational problems in number fields. J. Lond. Math. Soc. 105(4), 2373–2414 (2022)

    CrossRef  MathSciNet  Google Scholar 

  6. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 893–902. SIAM (2016)

    Google Scholar 

  7. Biasse, J.F., Van Vredendaal, C.: Fast multiquadratic S-unit computation and application to the calculation of class groups. Open Book Ser. 2(1), 103–118 (2019).

  8. Buchmann, J., Düllmann, S.: On the computation of discrete logarithms in class groups. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 134–139. Springer, Heidelberg (1991).

    CrossRef  Google Scholar 

  9. Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning “factorisatio numerorum”. J. Number Theory 17(1), 1–28 (1983)

    Google Scholar 

  10. Chatelain, D.: Bases des entiers des corps composés par des extensions quadratiques de Q. Ann. Sci. Univ. Besançon Math. (3) (6), 38 (1973)

    Google Scholar 

  11. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Heidelberg (1993).

    CrossRef  Google Scholar 

  12. Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017).

    CrossRef  Google Scholar 

  13. Cramer, R., Ducas, L., Wesolowski, B.: Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. J. ACM 68(2) (2021)

    Google Scholar 

  14. Dixon, J.D.: Exact solution of linear equations using P-Adic expansions. Numer. Math. 40(1), 137–141 (1982)

    CrossRef  MathSciNet  Google Scholar 

  15. Grenié, L., Molteni, G.: Explicit bounds for generators of the class group. Math. Comput. 87(313), 2483–2511 (2018)

    CrossRef  MathSciNet  Google Scholar 

  16. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    CrossRef  MathSciNet  Google Scholar 

  17. Lesavourey, A., Plantard, T., Susilo, W.: Short principal ideal problem in multicubic fields. J. Math. Cryptol. 14(1), 359–392 (2020)

    CrossRef  MathSciNet  Google Scholar 

  18. Lesavourey, A., Plantard, T., Susilo, W.: On the Short Principal Ideal Problem over some real Kummer fields. Cryptology ePrint Archive, Paper 2021/1623 (2021).

  19. Menezes, A.J., Katz, J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Google Scholar 

  20. Novoselov, S.A.: On ideal class group computation of imaginary multiquadratic fields. Prikl. Diskr. Mat. (58), 22–30 (2022).

  21. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110 (1978)

    CrossRef  MathSciNet  Google Scholar 

  22. Pomerance, C.: Elementary thoughts on discrete logarithms. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, vol. 44 (2008).

  23. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000)

    Google Scholar 

  24. Teske, E.: The Pohlig-Hellman method generalized for group structure computation. J. Symb. Comput. 27(6), 521–534 (1999)

    CrossRef  MathSciNet  Google Scholar 

  25. The Sage Developers: Sagemath, the Sage Mathematics Software System (Version 10.0) (2023).

  26. Vollmer, U.: Asymptotically fast discrete logarithms in quadratic number fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 581–594. Springer, Heidelberg (2000).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. A. Novoselov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novoselov, S.A. (2023). On the Discrete Logarithm Problem in the Ideal Class Group of Multiquadratic Fields. In: Aly, A., Tibouchi, M. (eds) Progress in Cryptology – LATINCRYPT 2023. LATINCRYPT 2023. Lecture Notes in Computer Science, vol 14168. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44468-5

  • Online ISBN: 978-3-031-44469-2

  • eBook Packages: Computer ScienceComputer Science (R0)