Skip to main content

Numerical Uncertainty of Convolutional Neural Networks Inference for Structural Brain MRI Analysis

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

This paper investigates the numerical uncertainty of Convolutional Neural Networks (CNNs) inference for structural brain MRI analysis. It applies Random Rounding—a stochastic arithmetic technique— to CNN models employed in non-linear registration (SynthMorph) and whole-brain segmentation (FastSurfer), and compares the resulting numerical uncertainty to the one measured in a reference image-processing pipeline (FreeSurfer recon-all). Results obtained on 32 representative subjects show that CNN predictions are substantially more accurate numerically than traditional image-processing results (non-linear registration: 19 vs 13 significant bits on average; whole-brain segmentation: 0.99 vs 0.92 Sørensen-Dice score on average), which suggests a better reproducibility of CNN results across execution environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botvinik-Nezer, R., et al.: Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582(7810), 84–88 (2020)

    Article  Google Scholar 

  2. Fanelli, D.: Is Science Really facing a reproducibility crisis, and do we need it to? Proc. Nat. Acad. Sci. 115(11), 2628–2631 (2018). https://www.pnas.org/doi/abs/10.1073/pnas.1708272114

  3. Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533(7604), 452–454 (2016)

    Article  Google Scholar 

  4. Gronenschild, E.H., et al.: The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLOS ONE 7(6), e38234 (2012)

    Article  Google Scholar 

  5. Glatard, T., et al.: Reproducibility of neuroimaging analyses across operating systems. Front. Neuroinform. 9, 12 (2015)

    Article  Google Scholar 

  6. Salari, A., Chatelain, Y., Kiar, G., Glatard, T.: Accurate simulation of operating system updates in neuroimaging using Monte-Carlo arithmetic. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 14–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_2

    Chapter  Google Scholar 

  7. Kiar, G., et al.: Numerical uncertainty in analytical pipelines lead to impactful variability in brain networks. PLOS ONE 16(11), e0250755 (2021)

    Article  Google Scholar 

  8. Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging 41(3), 543–558 (2021)

    Article  Google Scholar 

  9. Iglesias, J.E.: A ready-to-use machine learning tool for symmetric multi-modality registration of brain MRI. Sci. Rep. 13(1), 6657 (2023)

    Article  Google Scholar 

  10. Balakrishnan, G., Zhao, A., Sabuncu, M., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE TMI Trans. Med. Imaging 38, 1788–1800 (2019)

    Article  Google Scholar 

  11. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Initiative, A.D.N., et al.: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. Neuroimage 186, 713–727 (2019)

    Article  Google Scholar 

  12. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline. Neuroimage 219, 117012 (2020)

    Article  Google Scholar 

  13. Jog, A., Hoopes, A., Greve, D.N., Van Leemput, K., Fischl, B.: PSACNN: pulse sequence adaptive fast whole brain segmentation. Neuroimage 199, 553–569 (2019)

    Article  Google Scholar 

  14. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28

    Chapter  Google Scholar 

  15. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM (2002)

    Google Scholar 

  16. Kloberdanz, E., Kloberdanz, K.G., Le, W.: DeepStability: a study of unstable numerical methods and their solutions in deep learning. In: Proceedings of the 44th International Conference on Software Engineering, pp. 586–597 (2022)

    Google Scholar 

  17. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 6(1), 25–45 (2021)

    Article  Google Scholar 

  18. Forsythe, G.E.: Reprint of a note on rounding-off errors. SIAM Rev. 1(1), 66 (1959)

    Article  MathSciNet  Google Scholar 

  19. Févotte, F., Lathuiliere, B.: VERROU: a CESTAC evaluation without recompilation. SCAN 2016, 47 (2016)

    Google Scholar 

  20. Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  21. Parker, D.S.: Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arithmetic. University of California (Los Angeles). Computer Science Department (1997)

    Google Scholar 

  22. Verrou: floating-point error checker. https://github.com/edf-hpc/verrou. Accessed 28 Jun 2023

  23. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. ACM SIGPLAN Not. 42(6), 89–100 (2007)

    Article  Google Scholar 

  24. Denis, C., Castro, P.D.O., Petit, E.: Verificarlo: checking floating point accuracy through Monte Carlo arithmetic. In: 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), Los Alamitos, CA, USA, July 2016, pp. 55–62. IEEE Computer Society (2016)

    Google Scholar 

  25. Sohier, D., Castro, P.D.O., Févotte, F., Lathuilière, B., Petit, E., Jamond, O.: Confidence intervals for stochastic arithmetic. ACM Trans. Math. Softw. (TOMS) 47(2), 1–33 (2021)

    Article  MathSciNet  Google Scholar 

  26. Significant digits package. https://github.com/verificarlo/significantdigits. Accessed 28 Jun 2023

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Unsupervised learning for image registration. https://github.com/voxelmorph/voxelmorph#SynthMorph. Accessed 28 Jun 2023

  29. Fischl, B., et al.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)

    Article  Google Scholar 

  30. PyTorch implementation of FastSurferCNN. https://github.com/Deep-MI/FastSurfer. Accessed 28 Jun 2023

  31. Zuo, X.-N., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1(1), 1–13 (2014)

    Article  Google Scholar 

  32. Halchenko, Y., et al.: DataLad: distributed system for joint management of code, data, and their relationship. J. Open Source Softw. 6(63), 3262 (2021)

    Article  Google Scholar 

  33. Corr DataLad dataset. http://datasets.datalad.org/?dir=/corr/RawDataBIDS. Accessed 28 Jun 2023

  34. Verrou fix for SynthMorph. https://github.com/yohanchatelain/verrou/tree/synchroLib-v2.4.0. Accessed 28 Jun 2023

  35. Scripts used in the experiments. https://github.com/InesGP/structural_mri_uncertainty/tree/main. Accessed 28 Jun 2023

  36. Pepe, I.G., Chatelain, Y., Kiar, G., Glatard, T.: Numerical stability of DeepGOPlus inference. arXiv preprint arXiv:2212.06361 (2022)

  37. Salari, A., Kiar, G., Lewis, L., Evans, A.C., Glatard, T.: File-based localization of numerical perturbations in data analysis pipelines. GigaScience 9(12), giaa106 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Computations were made on the Narval and Béluga supercomputers from École de Technologie Supérieure (ETS, Montréal), managed by Calcul Québec and The Digital Alliance of Canada. The operation of these supercomputers are funded by the Canada Foundation for Innovation (CFI), le Ministère de l’Économie, des Sciences et de l’Innovation du Québec (MESI) and le Fonds de recherche du Québec - Nature et technologies (FRQ-NT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Gonzalez Pepe .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8455 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pepe, I.G., Sivakolunthu, V., Park, H.L., Chatelain, Y., Glatard, T. (2023). Numerical Uncertainty of Convolutional Neural Networks Inference for Structural Brain MRI Analysis. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics