Skip to main content

Grundlagen im Lean Management

  • Chapter
  • First Online:
Künstliche Intelligenz und schlanke Produktion

Zusammenfassung

Schlanke Fertigung, oder Lean Sigma, stammt aus Japan und ist ein bekanntes Werkzeug zur Verbesserung der Wettbewerbsfähigkeit von Herstellern weltweit. Schlanke Fertigung verbessert die Planung, Kontrolle und Verwaltung eines Fertigungssystems durch die Verwendung einfacher und effektiver Werkzeuge wie Kanbans, Taktgeber, Wertstrom-Mapping, 5s, Just-in-Time (JIT), Standardbetriebsverfahren, Lastausgleich, Pull-Fertigung und andere, wie in Abb. 1.1 dargestellt. Gemeinsame Merkmale dieser Werkzeuge sind Transparenz, Verständlichkeit und Kommunikation sowie Benutzerfreundlichkeit. Die Philosophie der geringen Stückzahl und hohen Vielfalt sowie die Pull-Produktion in der schlanken Fertigung sind jedoch möglicherweise nicht für alle Arten von Fabriken geeignet. Dennoch sind einige Konzepte und Techniken des Lean Managements von Referenzwert für alle Fabriken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. A. Popa, R. Ramos, A.B. Cover, C.G. Popa, Integration of artificial intelligence and lean sigma for large field production optimization: application to Kern River Field, SPE Annual Technical Conference and Exhibition (2005)

    Google Scholar 

  2. K. Antosz, L. Pasko, A. Gola, The use of artificial intelligence methods to assess the effectiveness of lean maintenance concept implementation in manufacturing enterprises. Appl. Sci. 10(21), 7922 (2020)

    Article  Google Scholar 

  3. M. Poppendieck, Principles of lean thinking. IT Manag. Select 18, 1–7 (2011)

    Google Scholar 

  4. A. Sanders, C. Elangeswaran, J.P. Wulfsberg, Industry 4.0 implies lean manufacturing: research activities in industry 4.0 function as enablers for lean manufacturing. J. Ind. Eng. Manag. 9(3), 811–833 (2016)

    Google Scholar 

  5. T. Melo, A.C. Alves, I. Lopes, A. Colim, Reducing 3M by improved layouts and ergonomic intervention in a lean journey in a cork company, in Occupational and Environmental Safety and Health II (2020), S. 537–545

    Google Scholar 

  6. N. Toshiko, Kaizen Express (Lean Enterprise Institute, 2009)

    Google Scholar 

  7. J. Michalska, D. Szewieczek, The 5S methodology as a tool for improving the organization. J. Achiev. Mater. Manuf. Eng. 24(2), 211–214 (2007)

    Google Scholar 

  8. T. Osada, 5S – Handmade Management Method (JIPM, 1989)

    Google Scholar 

  9. C.D. Chapman, Clean house with lean 5S. Qual. Prog. 38(6), 27–32 (2005)

    Google Scholar 

  10. R. Gapp, R. Fisher, K. Kobayashi, Implementing 5S within a Japanese context: an integrated management system. Manag. Decis. 46(4), 565–579 (2008)

    Article  Google Scholar 

  11. B. Kassem, F. Costa, A.P. Staudacher, Discovering artificial intelligence implementation and insights for lean production, in European Lean Educator Conference (2021), S. 172–181

    Google Scholar 

  12. J.T. Black, Design rules for implementing the Toyota production system. Int. J. Prod. Res. 45(16), 3639–3664 (2007)

    Article  MATH  Google Scholar 

  13. M. Saruta, Toyota production systems: the ‘Toyota way’ and labour–management relations. Asian Bus. Manag. 5(4), 487–506 (2006)

    Article  Google Scholar 

  14. M.L. Junior, M. Godinho Filho, Variations of the kanban system: literature review and classification. Int. J. Prod. Econ. 125(1), 13–21 (2010)

    Google Scholar 

  15. H. Groenevelt, The just-in-time system. Handb. Oper. Res. Manag. Sci. 4, 629–670 (1993)

    Article  Google Scholar 

  16. T. Chen, Creating a just-in-time location-aware service using fuzzy logic. Appl. Spat. Anal. Policy 26(9), 287–307 (2016)

    Article  MathSciNet  Google Scholar 

  17. H. Pačaiová, G. Ižaríková, Base principles and practices for implementation of total productive maintenance in automotive industry. Qual. Innov. Prosper. 23(1), 45–59 (2019)

    Article  Google Scholar 

  18. leanproduction.com, TPM (total productive maintenance) (2021). https://www.leanproduction.com/tpm/

  19. C.J. Bamber, J.M. Sharp, M.T. Hides, Factors affecting successful implementation of total productive maintenance: a UK manufacturing case study perspective. J. Qual. Maint. Eng. 5(3), 162–181 (1999)

    Article  Google Scholar 

  20. R.M. Ali, A.M. Deif, Dynamic lean assessment for takt time implementation. Procedia CIRP 17, 577–581 (2014)

    Article  Google Scholar 

  21. T.R. Mohan, J.P. Roselyn, R.A. Uthra, D. Devaraj, K. Umachandran, Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Comput. Ind. Eng. 157, 107267 (2021)

    Article  Google Scholar 

  22. H. Nakayama, S. Ata, I. Oka, Predicting time series of individual trends with resolution adaptive ARIMA, in 2013 IEEE International Workshop on Measurements & Networking (2013), S. 143–148

    Google Scholar 

  23. A. Encapera, A. Gosavi, S.L. Murray, Total productive maintenance of make-to-stock production-inventory systems via artificial-intelligence-based iSMART. Int. J. Syst. Sci. Operat. Logist. 8(2), 154–166 (2021)

    Google Scholar 

  24. K. Senderská, A. Mareš, Š Václav, Spaghetti diagram application for workers’ movement analysis. UPB Sci. Bull. Ser. D Mech. Eng. 79(1), 139–150 (2017)

    Google Scholar 

  25. N. Daneshjo, V. Rudy, P. Malega, P. Krnáčová, Application of Spaghetti diagram in layout evaluation process: a case study. Technol. Edu. Manag. Inf. J. 10(2), 573–582 (2021)

    Google Scholar 

  26. J.F. Cox III, J.G. Schleier Jr., Theory of Constraints Handbook (McGraw-Hill Education, 2010)

    Google Scholar 

  27. H. Zhang, Z. Jiang, C. Guo, Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. Int. J. Adv. Manuf. Technol. 41(1–2), 110–121 (2009)

    Article  Google Scholar 

  28. T. Chen, A fuzzy-neural DBD approach for job scheduling in a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 8(6), 4024–4044 (2012)

    Google Scholar 

  29. M. Braglia, G. Carmignani, F. Zammori, A new value stream mapping approach for complex production systems. Int. J. Prod. Res. 44(18–19), 3929–3952 (2006)

    Article  MATH  Google Scholar 

  30. P. Perico, J. Mattioli, Empowering process and control in lean 4.0 with artificial intelligence, in Third International Conference on Artificial Intelligence for Industries (2020), S. 6–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin-Chih Toly Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, TC.T., Wang, YC. (2023). Grundlagen im Lean Management. In: Künstliche Intelligenz und schlanke Produktion. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-44280-3_1

Download citation

Publish with us

Policies and ethics