Skip to main content

Invited Paper: Time Is Not a Healer, but It Sure Makes Hindsight 20:20

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2023)

Abstract

In the 1980s, three related impossibility results emerged in the field of distributed computing. First, Fischer, Lynch, and Paterson demonstrated that deterministic consensus is unattainable in an asynchronous message-passing system when a single process may crash-stop. Subsequently, Loui and Abu-Amara showed the infeasibility of achieving consensus in asynchronous shared-memory systems, given the possibility of one crash-stop failure. Lastly, Santoro and Widmayer established the impossibility of consensus in synchronous message-passing systems with a single process per round experiencing send-omission faults.

In this paper, we revisit these seminal results. First, we observe that all these systems are equivalent in the sense of implementing each other. Then, we prove the impossibility of consensus in the synchronous system of Santoro and Widmayer, which is the easiest to reason about. Taking inspiration from Volzer’s proof pearl and from the Borowski-Gafni simulation, we obtain a remarkably simple proof.

We believe that a contemporary pedagogical approach to teaching these results should first address the equivalence of the systems before proving the consensus impossibility within the system where the result is most evident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(n>2\) is required for the ABD shared-memory simulation algorithm and by the get-core algorithm.

  2. 2.

    See Sect. 2.1 for a discussion of colorless tasks.

  3. 3.

    This is an instance of the following first-order logic tautology: \(\exists y. \forall x .P(x,y)\rightarrow \forall x. \exists y . P(x,y)\).

References

  1. Afek, A., Gafni, E.: A simple characterization of asynchronous computations. Theor. Comput. Sci. 561Part B, 88–95 (2015). ISSN 0304–3975. https://doi.org/10.1016/j.tcs.2014.07.022. http://www.sciencedirect.com/science/article/pii/S0304397514005659

  2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J. ACM (JACM) 42(1), 124–142 (1995). ISSN 0004–5411. https://doi.org/10.1145/200836.200869

  3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics, vol. 19. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  4. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In: FOCS, vol. 89, pp. 410–415 (1989)

    Google Scholar 

  5. Bisping, B., et al.: Mechanical verification of a constructive proof for FLP. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_7

    Chapter  Google Scholar 

  6. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 91–100 (1993). ACM. ISBN 978-0-89791-591-5. https://doi.org/10.1145/167088.167119

  7. Chandy, M., Misra, J.: On the nonexistence of robust commit protocols (1985)

    Google Scholar 

  8. Constable, R.: Effectively nonblocking consensus procedures can execute forever-a constructive version of FLP (2011)

    Google Scholar 

  9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. 32(2), 374–382 (1985). ISSN 0004–5411. https://doi.org/10.1145/3149.214121

  10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS 1983, pp. 1–7 (1985). Association for Computing Machinery, ISBN 978-0-89791-097-2. https://doi.org/10.1145/588058.588060

  11. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991). ISSN 0164–0925. https://doi.org/10.1145/114005.102808

  12. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, Burlington (2013). ISBN 978-0-12-404578-1

    Google Scholar 

  13. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM (JACM) 46(6), 858–923 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable asynchronous processes. Adv. Comput. Res. 4(163), 31 (1987)

    Google Scholar 

  15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)

    MATH  Google Scholar 

  16. Raynal, M., Roy, M.: A note on a simple equivalence between round-based synchronous and asynchronous models. In: 11th Pacific Rim International Symposium on Dependable Computing (PRDC 2005), p. 4 (2005). https://doi.org/10.1109/PRDC.2005.10

  17. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. 29(5):1449–1483 (2000). ISSN 0097–5397. https://doi.org/10.1137/S0097539796307698. https://epubs.siam.org/doi/abs/10.1137/S0097539796307698

  18. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.) STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0028994

    Chapter  Google Scholar 

  19. Santoro, N., Widmayer, P.: Distributed function evaluation in the presence of transmission faults. In: Asano, T., Ibaraki, T., Imai, H., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450, pp. 358–367. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52921-7_85

    Chapter  Google Scholar 

  20. Taubenfeld, G.: On the nonexistence of resilient consensus protocols. Inf. Process. Lett. 37(5), 285–289 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Völzer, H.: A constructive proof for FLP. 92(2), 83–87. http://www.sciencedirect.com/science/article/pii/S0020019004001887

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Losa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gafni, E., Losa, G. (2023). Invited Paper: Time Is Not a Healer, but It Sure Makes Hindsight 20:20. In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44274-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44273-5

  • Online ISBN: 978-3-031-44274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics