Skip to main content

Towards Accurate and Efficient Sleep Period Detection Using Wearable Devices

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2023)

Abstract

Sleep monitoring has traditionally required expensive equipment and expert assessment. Wearable devices are however becoming a viable option for monitoring sleep. This study investigates methods for autonomously identifying sleep segments base on wearable device data. We employ and evaluate machine and deep learning models on the benchmark MESA dataset, with results showing that they outperform traditional methods in terms of accuracy, F1 score, and Matthews Correlation Coefficient (MCC). The most accurate model, namely Light Gradient Boosting Machine, obtained an F1 score of 0.93 and an MCC of 0.73. Additionally, sleep quality metrics were used to assess the models. Furthermore, it should be noted that the proposed approach is device-agnostic, and more accessible and cost-effective than the traditional polysomnography (PSG) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://sleepdata.org/datasets/mesa.

  2. 2.

    https://github.com/joaopalotti/sleep_boundary_project.

References

  1. Ancoli-Israel, S., Cole, R., Alessi, C., Chambers, M., Moorcroft, W., Pollak, C.P.: The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3), 342–392 (2003)

    Article  Google Scholar 

  2. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  3. Berry, R.B., Brooks, R., Gamaldo, C.E., Harding, S.M., Marcus, C., Vaughn, B.V., et al.: The AASM manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine (2012)

    Google Scholar 

  4. Boudreaux, B.D., et al.: Validity of wearable activity monitors during cycling and resistance exercise. Med. Sci. Sports Exerc. 50(3), 624–633 (2018)

    Article  Google Scholar 

  5. Cole, R.J., Kripke, D.F., Gruen, W., Mullaney, D.J., Gillin, J.C.: Automatic sleep/wake identification from wrist activity. Sleep 15(5), 461–469 (1992)

    Article  Google Scholar 

  6. Czeisler, C.A.: Duration, timing and quality of sleep are each vital for health, performance and safety. Sleep Health J. National Sleep Found. 1(1), 5–8 (2015)

    Article  Google Scholar 

  7. Dong, H., Supratak, A., Pan, W., Wu, C., Matthews, P.M., Guo, Y.: Mixed neural network approach for temporal sleep stage classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 324–333 (2017)

    Article  Google Scholar 

  8. Eckert, D.J., Younes, M.K.: Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J. Appl. Physiol. 116(3), 302–313 (2014)

    Article  Google Scholar 

  9. Feehan, L.M., et al.: Accuracy of fitbit devices: systematic review and narrative syntheses of quantitative data. JMIR mHealth uHealth 6(8), e10527 (2018)

    Article  Google Scholar 

  10. van Hees, V.T., et al.: Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 8(1), 12975 (2018)

    Article  MathSciNet  Google Scholar 

  11. Hong, S., Zhou, Y., Shang, J., Xiao, C., Sun, J.: Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput. Biol. Med. 122, 103801 (2020)

    Article  Google Scholar 

  12. Kahawage, P., Jumabhoy, R., Hamill, K., de Zambotti, M., Drummond, S.P.: Validity, potential clinical utility, and comparison of consumer and research-grade activity trackers in insomnia disorder I: in-lab validation against polysomnography. J. Sleep Res. 29(1), e12931 (2020)

    Article  Google Scholar 

  13. Khademi, A., El-Manzalawy, Y., Master, L., Buxton, O.M., Honavar, V.G.: Personalized sleep parameters estimation from actigraphy: a machine learning approach. Nat. Sci. Sleep (2019)

    Google Scholar 

  14. Kripke, D.F., et al.: Wrist actigraphic scoring for sleep laboratory patients: algorithm development. J. Sleep Res. 19(4), 612–619 (2010)

    Article  Google Scholar 

  15. Lee, X.K., et al.: Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. J. Clin. Sleep Med. 15(9), 1337–1346 (2019)

    Article  Google Scholar 

  16. Moreno-Pino, F., Porras-Segovia, A., López-Esteban, P., Artés, A., Baca-García, E.: Validation of Fitbit charge 2 and Fitbit Alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea. J. Clin. Sleep Med. 15(11), 1645–1653 (2019)

    Article  Google Scholar 

  17. Palotti, J., et al.: Benchmark on a large cohort for sleep-wake classification with machine learning techniques. NPJ Digit. Med. 2(1), 50 (2019)

    Article  Google Scholar 

  18. Partinen, M.: Epidemiology of sleep disorders. In: Handbook of Clinical Neurology (2011)

    Google Scholar 

  19. Perez-Pozuelo, I., et al.: Detecting sleep outside the clinic using wearable heart rate devices. Sci. Rep. 12(1), 7956 (2022)

    Article  Google Scholar 

  20. Perez-Pozuelo, I., et al.: The future of sleep health: a data-driven revolution in sleep science and medicine. NPJ Digit. Med. 3(1), 42 (2020)

    Article  Google Scholar 

  21. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  22. Sadeh, A., Acebo, C.: The role of actigraphy in sleep medicine. Sleep Med. Rev. 6(2), 113–124 (2002)

    Article  Google Scholar 

  23. Sadeh, A., Sharkey, M., Carskadon, M.A.: Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 17(3), 201–207 (1994)

    Article  Google Scholar 

  24. Sazonov, E., Sazonova, N., Schuckers, S., Neuman, M., Group, C.S., et al.: Activity-based sleep-wake identification in infants. Physiol. Meas. 25(5), 1291 (2004)

    Google Scholar 

  25. Schade, M.M., et al.: Sleep validity of a non-contact bedside movement and respiration-sensing device. J. Clin. Sleep Med. 15(7), 1051–1061 (2019)

    Article  Google Scholar 

  26. Sun, C., Hong, S., Wang, J., Dong, X., Han, F., Li, H.: A systematic review of deep learning methods for modeling electrocardiograms during sleep. Physiol. Meas. (2022)

    Google Scholar 

  27. Tal, A., Shinar, Z., Shaki, D., Codish, S., Goldbart, A.: Validation of contact-free sleep monitoring device with comparison to polysomnography. J. Clin. Sleep Med. 13(3), 517–522 (2017)

    Article  Google Scholar 

  28. Weiss, A.R., Johnson, N.L., Berger, N.A., Redline, S.: Validity of activity-based devices to estimate sleep. J. Clin. Sleep Med. 6(4), 336–342 (2010)

    Article  Google Scholar 

  29. Zhai, B., Perez-Pozuelo, I., Clifton, E.A., Palotti, J., Guan, Y.: Making sense of sleep: multimodal sleep stage classification in a large, diverse population using movement and cardiac sensing. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2020)

    Google Scholar 

  30. Zhang, J., Wu, Y.: A new method for automatic sleep stage classification. IEEE Trans. Biomed. Circuits Syst. 11(5), 1097–1110 (2017)

    Article  Google Scholar 

  31. Zhang, J., Wu, Y.: Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network. Biomed. Eng./Biomedizinische Technik 63(2), 177–190 (2018)

    Google Scholar 

  32. Zhang, J., Wu, Y.: Complex-valued unsupervised convolutional neural networks for sleep stage classification. Comput. Methods Programs Biomed. 164, 181–191 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Jokar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jokar, F., Azzopardi, G., Palotti, J. (2023). Towards Accurate and Efficient Sleep Period Detection Using Wearable Devices. In: Tsapatsoulis, N., et al. Computer Analysis of Images and Patterns. CAIP 2023. Lecture Notes in Computer Science, vol 14185. Springer, Cham. https://doi.org/10.1007/978-3-031-44240-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44240-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44239-1

  • Online ISBN: 978-3-031-44240-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics