Skip to main content

A System-Level Brain Model for Enactive Haptic Perception in a Humanoid Robot

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Perception is not a passive process but the result of an interaction between an organism and the environment. This is especially clear in haptic perception that depends entirely on tactile exploration of an object. We investigate this idea in a system-level brain model of somatosensory and motor cortex and show how it can use signals from a humanoid robot to categorize different object. The model suggests a number of critical properties that the sensorimotor system must have to support this form of enactive perception. Furthermore, we show that motor feedback during controlled movements is sufficient for haptic object categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balkenius, C., Johansson, B., Tjøstheim, T.A.: Ikaros: A framework for controlling robots with system-level brain models. Int. J. Adv. Robot. Syst. 17, 1729881420925002 (2020)

    Google Scholar 

  2. Balkenius, C., Tjøstheim, T.A., Johansson, B., Wallin, A., Gärdenfors, P.: The missing link between memory and reinforcement learning. Frontiers Psychol. 11, 560080 (2020)

    Article  Google Scholar 

  3. Bergmann Tiest, W.M.: Tactual perception of material properties. Vis. Res. 50(24), 2775–2782 (2010)

    Article  Google Scholar 

  4. Bergmann Tiest, W.M., Kappers, A.: Cues for haptic perception of compliance, pp. 189–199. IEEE Trans Haptics (2009)

    Google Scholar 

  5. Choi, B., Lee, S., Choi, H.R., Kang, S.: Development of anthropomorphic robot hand with tactile sensor: Skku hand ii. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3779–3784. IEEE (2006)

    Google Scholar 

  6. Fitzpatrick, P., Metta, G., Natale, L., Rao, S., Sandini, G.: Learning about objects through action-initial steps towards artificial cognition. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 3, pp. 3140–3145. IEEE (2003)

    Google Scholar 

  7. Fukaya, N., Toyama, S., Asfour, T., Dillmann, R.: Design of the TUAT/Karlsruhe humanoid hand. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), vol. 3, pp. 1754–1759. IEEE (2000)

    Google Scholar 

  8. Gibson, J.J.: The Senses Considered as Perceptual Systems. Allen and Unwin, Crows Nest (1966)

    Google Scholar 

  9. Gonçalves, A., Saponaro, G., Jamone, L., Bernardino, A.: Learning visual affordances of objects and tools through autonomous robot exploration. In: 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 128–133. IEEE (2014)

    Google Scholar 

  10. Hjelm, M., Ek, C.H., Detry, R., Kragic, D.: Invariant feature mappings for generalizing affordance understanding using regularized metric learning. arXiv preprint arXiv:1901.10673 (2019)

  11. Hoelscher, J., Peters, J., Hermans, T.: Evaluation of tactile feature extraction for interactive object recognition. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 310–317. IEEE (2015)

    Google Scholar 

  12. Johansson, B., Tjøstheim, T.A., Balkenius, C.: Epi: an open humanoid platform for developmental robotics. Int. J. Adv. Robot. Syst. 17(2), 1729881420911498 (2020)

    Article  Google Scholar 

  13. Johnsson, M., Balkenius, C.: Experiments with self-organizing systems for texture and hardness perception. Robot. Autonom. Syst. 4, 53–62 (2009)

    Google Scholar 

  14. Johnsson, M., Balkenius, C.: Recognizing texture and hardness by touch. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 482–487. IEEE (2008)

    Google Scholar 

  15. Lederman, S.J.: Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Perception & Psychophysics 16, 385–395 (1974)

    Article  Google Scholar 

  16. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987)

    Article  Google Scholar 

  17. Mar, T., Tikhanoff, V., Metta, G., Natale, L.: Self-supervised learning of grasp dependent tool affordances on the iCub humanoid robot. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3200–3206. IEEE (2015)

    Google Scholar 

  18. Matsuoka, Y.: Embodiment and manipulation learning process for a humanoid hand. Technical Report, 1546, MIT Artificial Intelligence Laboratory (1995)

    Google Scholar 

  19. Miall, R.C., Wolpert, D.M.: Forward models for physiological motor control. Neural Netw. 9(8), 1265–1279 (1996)

    Article  MATH  Google Scholar 

  20. Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J.: Learning object affordances: from sensory-motor coordination to imitation. IEEE Trans. Robot. 24(1), 15–26 (2008)

    Article  Google Scholar 

  21. Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N.G.: Detecting object affordances with convolutional neural networks. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2765–2770. IEEE (2016)

    Google Scholar 

  22. Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2013)

    Article  Google Scholar 

  23. Regoli, M., Jamali, N., Metta, G., Natale, L.: Controlled tactile exploration and haptic object recognition. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 47–54. IEEE (2017)

    Google Scholar 

  24. Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To afford or not to afford: a new formalization of affordances toward affordance-based robot control. Adapt. Behav. 15(4), 447–472 (2007)

    Article  Google Scholar 

  25. Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43(6), 482 (1950)

    Article  Google Scholar 

  26. Sugaiwa, T., Fujii, G., Iwata, H., Sugano, S.: A methodology for setting grasping force for picking up an object with unknown weight, friction, and stiffness. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 288–293. IEEE (2010)

    Google Scholar 

  27. Tikhanoff, V., Pattacini, U., Natale, L., Metta, G.: Exploring affordances and tool use on the iCub. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 130–137. IEEE (2013)

    Google Scholar 

  28. Yussof, H., Ohka, M., Takata, J., Nasu, Y., Yamano, M.: Low force control scheme for object hardness distinction in robot manipulation based on tactile sensing. In: 2008 IEEE International Conference on Robotics and Automation, pp. 3443–3448. IEEE (2008)

    Google Scholar 

  29. Zoeller, A., Lezkan, A., Paulun, V., Fleming, R., Drewing, K.: Integration of prior knowledge during haptic exploration depends on information type. J. Vis. 19(4), 20 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program - Humanities and Society (WASP-HS) funded by the Marianne and Marcus Wallenberg Foundation and the Marcus and Amalia Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Balkenius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ingvarsdóttir, K.Ó., Johansson, B., Tjøstheim, T.A., Balkenius, C. (2023). A System-Level Brain Model for Enactive Haptic Perception in a Humanoid Robot. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14254. Springer, Cham. https://doi.org/10.1007/978-3-031-44207-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44207-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44206-3

  • Online ISBN: 978-3-031-44207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics