Skip to main content

One Hip Wonder: 1D-CNNs Reduce Sensor Requirements for Everyday Gait Analysis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Wearable inertial measurement units (IMU) enable large-scale multicenter studies of everyday gait analysis in patients with rare neurodegenerative diseases such as cerebellar ataxia. To date, the quantity of sensors used in such studies has involved a trade-off between data quality and clinical feasibility. Here, we apply machine learning techniques to potentially reduce the number of sensors required for real-life gait analysis from three sensors to a single sensor on the hip. We trained 1D-CNNs on constrained walking data from individuals with cerebellar ataxia and healthy controls to generate synthetic foot data and predict gait features from a single sensor and tested them in free walking conditions, including the everyday life of unseen subjects. We compare 14 stride-based gait features (e.g. stride length) with three sensors (two on the feet and one on the hip) with our approach estimating the same features based on raw IMU-data from a single sensor placed on the hip. Leveraging layer-wise relevance propagation (LRP) and transfer learning, we determine driving elements of the input signals to predict individuals’ gait features. Our approach achieved a relative error (\(< 5\%\)) similar to the state of the art three-sensor approach. Thus, machine learning-assisted one-sensor systems can reduce the complexity and cost of gait analysis in upcoming clinical studies while maintaining clinical meaningful effect sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anders, C.J., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Software for dataset-wide xai: From local explanations to global insights with Zennit, CoRelAy, and ViRelAy. CoRR abs/2106.13200 (2021)

    Google Scholar 

  2. APDM: Mobility lab whitepaper (2015). https://apdm.wpengine.com/wp-content/uploads/2015/05/02-Mobility-Lab-Whitepaper.pdf

  3. Buckley, E., Mazzà, C., McNeill, A.: A systematic review of the gait characteristics associated with cerebellar ataxia. Gait Posture 60, 154–163 (2018)

    Article  Google Scholar 

  4. Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series. In: International Conference on Machine Learning (2017)

    Google Scholar 

  5. Czech, M., et al.: The impact of reducing the number of wearable devices on measuring gait in Parkinson disease: noninterventional exploratory study. JMIR Rehabil. Assist. Technol. 7(2), e17986 (2020)

    Article  Google Scholar 

  6. Ghanekar, S.D., Kuo, S.H., Staffetti, J.S., Zesiewicz, T.A.: Current and emerging treatment modalities for spinocerebellar ataxias. Expert Rev. Neurother. 22(2), 101–114 (2022). pMID: 35081319

    Google Scholar 

  7. Goyal, P., Ribeiro, V.J., Saran, H., Kumar, A.: Strap-down pedestrian dead-reckoning system. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2011. pp. 1–7. IEEE/Institute of Electrical and Electronics Engineers Incorporated (2011)

    Google Scholar 

  8. Hannink, J., Kautz, T., Pasluosta, C.F., Gasmann, K.G., Klucken, J., Eskofier, B.M.: Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. Health Inf. 21(1), 85–93 (2017)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015)

    Google Scholar 

  10. Hossain, M.S.B., Dranetz, J., Choi, H., Guo, Z.: DeepBBWAE-Net: a CNN-RNN based deep superlearner for estimating lower extremity sagittal plane joint kinematics using shoe-mounted IMU sensors in daily living. IEEE J. Biomed. Health Inf. 26(8), 3906–3917 (2022)

    Article  Google Scholar 

  11. Ilg, W., et al.: the ESMI consortium: digital gait biomarkers allow to capture 1-year longitudinal change in spinocerebellar ataxia type 3. Mov. Disord. 37(11), 2295–2301 (2022)

    Article  Google Scholar 

  12. Ilg, W., et al.: Real-life gait assessment in degenerative cerebellar ataxia: toward ecologically valid biomarkers. Neurology 95(9), e1199–e1210 (2020)

    Article  Google Scholar 

  13. Jabri, S., Carender, W., Wiens, J., Sienko, K.H.: Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection. J. Neuroeng. Rehabil. 19(1), 132 (2022)

    Article  Google Scholar 

  14. Joyce, M.R., et al.: Quality of life changes following the onset of cerebellar ataxia: symptoms and concerns self-reported by ataxia patients and informants. Cerebellum (London, England) 21(4), 592–605 (2022)

    Article  Google Scholar 

  15. Kadirvelu, B., et al.: A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia. Nat. Med. 29(1), 86–94 (2023)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  17. Letzgus, S., Wagner, P., Lederer, J., Samek, W., Müller, K.R., Montavon, G.: Toward explainable AI for regression models. IEEE Signal Process. Mag. 39(4), 40–58 (2022). https://arxiv.org/pdf/2112.11407v2

  18. Maghoumi, M., Taranta, E.M., LaViola, J.: DeepNAG: deep non-adversarial gesture generation. In: 26th International Conference on Intelligent User Interfaces, pp. 213–223 (2021)

    Google Scholar 

  19. Müller, M.: Dynamic Time Warping, pp. 69–84. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-74048-3_4

  20. Morris, R., Stuart, S., McBarron, G., Fino, P.C., Mancini, M., Curtze, C.: Validity of mobility lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease. Physiol. Meas. 40(9), 095003 (2019)

    Article  Google Scholar 

  21. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks (2012)

    Google Scholar 

  22. Ruano, L., Melo, C., Silva, M.C., Coutinho, P.: The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3), 174–183 (2014)

    Article  Google Scholar 

  23. Thierfelder, A., et al.: Real-life turning movements capture subtle longitudinal and preataxic changes in cerebellar ataxia. Mov. Disord.: Official J. Mov. Disord. Soc. 37(5), 1047–1058 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Jens Seemann. This work was supported by Else Kröner-Fresenius-Stiftung: Project ClinbrAIn. Further support was received by the European Research Council ERC 2019-SYG under EU Horizon 2020 research and innovation programme (grant agreement No. 856495, RELEVANCE). ChatGPT generated the part of the title ‘One Hip Wonder’ given the abstract and the prompt to generate a fun title.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Seemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seemann, J., Loris, T., Weber, L., Synofzik, M., Giese, M.A., Ilg, W. (2023). One Hip Wonder: 1D-CNNs Reduce Sensor Requirements for Everyday Gait Analysis. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14263. Springer, Cham. https://doi.org/10.1007/978-3-031-44204-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44204-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44203-2

  • Online ISBN: 978-3-031-44204-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics