Skip to main content

What Will Make Misinformation Spread: An XAI Perspective

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1902))

Included in the following conference series:

  • 660 Accesses

Abstract

Explainable Artificial Intelligence (XAI) techniques can provide explanations of how AI systems or models make decisions, or what factors AI considers when making the decisions. Online social networks have a problem with misinformation which is known to have negative effects. In this paper, we propose to utilize XAI techniques to study what factors lead to misinformation spreading by explaining a trained graph neural network that predicts misinformation spread. However, it is difficult to achieve this with the existing XAI methods for homogeneous social networks, since the spread of misinformation is often associated with heterogeneous social networks which contain different types of nodes and relationships. This paper presents, MisInfoExplainer, an XAI pipeline for explaining the factors contributing to misinformation spread in heterogeneous social networks. Firstly, a prediction module is proposed for predicting misinformation spread by leveraging GraphSAGE with heterogeneous graph convolution. Secondly, we propose an explanation module that uses gradient-based and perturbation-based methods, to identify what makes misinformation spread by explaining the trained prediction module. Experimentally we demonstrate the superiority of MisinfoExplainer in predicting misinformation spread, and also reveal the key factors that make misinformation spread by generating a global explanation for the prediction module. Finally, we conclude that the perturbation-based approach is superior to the gradient-based approach, both in terms of qualitative analysis and quantitative measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amati, G., Angelini, S., Capri, F., Gambosi, G., Rossi, G., Vocca, P.: Twitter temporal evolution analysis: comparing event and topic driven retweet graphs. IADIS Int. J. Comput. Sci. Inf. Syst. 11(2), 155–162 (2016)

    Google Scholar 

  2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  3. Berger, J., Milkman, K.L.: What makes online content viral? J. Mark. Res. 49(2), 192–205 (2012)

    Article  Google Scholar 

  4. Bian, T., et al.: Rumor detection on social media with bi-directional graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 549–556 (2020)

    Google Scholar 

  5. Bo, H., McConville, R., Hong, J., Liu, W.: Social network influence ranking via embedding network interactions for user recommendation. In: Companion Proceedings of the Web Conference 2020, pp. 379–384 (2020)

    Google Scholar 

  6. Bo, H., McConville, R., Hong, J., Liu, W.: Social influence prediction with train and test time augmentation for graph neural networks. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  7. Bo, H., McConville, R., Hong, J., Liu, W.: Ego-graph replay based continual learning for misinformation engagement prediction. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 01–08. IEEE (2022)

    Google Scholar 

  8. Cao, Q., Shen, H., Gao, J., Wei, B., Cheng, X.: Popularity prediction on social platforms with coupled graph neural networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 70–78 (2020)

    Google Scholar 

  9. Chen, T., Li, X., Yin, H., Zhang, J.: Call attention to rumors: deep attention based recurrent neural networks for early rumor detection. In: Ganji, M., Rashidi, L., Fung, B.C.M., Wang, C. (eds.) PAKDD 2018. LNCS (LNAI), vol. 11154, pp. 40–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04503-6_4

    Chapter  Google Scholar 

  10. Chen, X., Zhang, F., Zhou, F., Bonsangue, M.: Multi-scale graph capsule with influence attention for information cascades prediction. Int. J. Intell. Syst. 37(3), 2584–2611 (2022)

    Article  Google Scholar 

  11. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Information diffusion prediction via recurrent cascades convolution. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 770–781 (2019). https://doi.org/10.1109/ICDE.2019.00074

  12. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

    Google Scholar 

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y.: Graphlime: local interpretable model explanations for graph neural networks. IEEE Trans. Knowl. Data Eng. 35, 6968–6972 (2022)

    Google Scholar 

  17. Kumar, S., Asthana, R., Upadhyay, S., Upreti, N., Akbar, M.: Fake news detection using deep learning models: a novel approach. Trans. Emerg. Telecommun. Technol. 31(2), e3767 (2020)

    Article  Google Scholar 

  18. Li, Y., Xie, Y.: Is a picture worth a thousand words? an empirical study of image content and social media engagement. J. Mark. Res. 57(1), 1–19 (2020)

    Article  Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  20. Ma, H., McAreavey, K., McConville, R., Liu, W.: Explainable AI for non-experts: energy tariff forecasting. In: 2022 27th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2022)

    Google Scholar 

  21. Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M.: Fake news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673 (2019)

  22. Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social networks. Phys. A 374(1), 457–470 (2007)

    Article  Google Scholar 

  23. Nielsen, D.S., McConville, R.: Mumin: a large-scale multilingual multimodal fact-checked misinformation social network dataset. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3141–3153 (2022)

    Google Scholar 

  24. Pennycook, G., Rand, D.G.: The psychology of fake news. Trends Cogn. Sci. 25(5), 388–402 (2021)

    Article  Google Scholar 

  25. Perotti, A., Bajardi, P., Bonchi, F., Panisson, A.: Graphshap: motif-based explanations for black-box graph classifiers. arXiv preprint arXiv:2202.08815 (2022)

  26. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability methods for graph convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10772–10781 (2019)

    Google Scholar 

  27. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: Deepinf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2110–2119 (2018)

    Google Scholar 

  28. Schlichtkrull, M.S., De Cao, N., Titov, I.: Interpreting graph neural networks for NLP with differentiable edge masking. arXiv preprint arXiv:2010.00577 (2020)

  29. Shi, Y., McAreavey, K., Liu, W.: Evaluating contrastive explanations for AI planning with non-experts: a smart home battery scenario. In: 2022 27th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2022)

    Google Scholar 

  30. Shi, Z., Cartlidge, J.: State dependent parallel neural Hawkes process for limit order book event stream prediction and simulation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1607–1615 (2022)

    Google Scholar 

  31. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: defend: explainable fake news detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 395–405 (2019)

    Google Scholar 

  32. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  33. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  34. Vu, M., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations for graph neural networks. Adv. Neural. Inf. Process. Syst. 33, 12225–12235 (2020)

    Google Scholar 

  35. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

  36. Yang, X., Burghardt, T., Mirmehdi, M.: Dynamic curriculum learning for great ape detection in the wild. Int. J. Comput. Vis. 131, 1–19 (2023)

    Article  Google Scholar 

  37. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  38. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: a taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5782–5799 (2022)

    Google Scholar 

  39. Zuo, W., Raman, A., Mondragón, R.J., Tyson, G.: Set in stone: analysis of an immutable web3 social media platform. In: Proceedings of the ACM Web Conference 2023, pp. 1865–1874 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Bo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bo, H., Wu, Y., You, Z., McConville, R., Hong, J., Liu, W. (2023). What Will Make Misinformation Spread: An XAI Perspective. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1902. Springer, Cham. https://doi.org/10.1007/978-3-031-44067-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44067-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44066-3

  • Online ISBN: 978-3-031-44067-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics