Skip to main content

Hydrogen Sulfide for the Treatment of Hypertensive Nephropathy and Calcium-Based Nephrolithiasis

  • Chapter
  • First Online:
Hydrogen Sulfide in Kidney Diseases
  • 56 Accesses

Abstract

Hypertension is a major public health problem globally. It is the most common cause of cardiovascular morbidities and mortalities, with a negative impact on renal function. Uncontrolled hypertension causes chronic kidney disease, which progresses to end-stage renal disease and eventually loss of renal function. Unfortunately, the mechanism underlying the pathogenesis of hypertension and its associated nephropathy is still poorly understood. Also worrying is the fact that despite conventional antihypertensive therapies, achievement of blood pressure control and preservation of renal function still remain a worldwide public health challenge in a significant subpopulation of hypertensive patients. This suggests the need for novel pharmacotherapeutic approaches to curb the problem. Hydrogen sulfide (H2S), the third established member of the gasotransmitter family after nitric oxide and carbon monoxide, has been recognized and established to possess antihypertensive and renoprotective properties, which may represent an important therapeutic alternative for hypertensive nephropathy. In this chapter, recent findings from preclinical studies about the therapeutic effect of H2S against hypertensive nephropathy and its future clinical use are discussed. A section of the chapter also discusses recent developments about clinical and translational research on calcium-based nephrolithiasis as a risk factor for hypertensive nephropathy, with a further discussion on H2S as an emerging novel therapy to improve clinical outcome.

This chapter is an expanded version by the same author in the publication titled H2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide. 2017;64:52–60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramkumar N, Stuart D, Mironova E, Bugay V, Wang S, Abraham N, et al. Renal tubular epithelia cell prorenin receptor regulates blood pressure and sodium transport. Am J Physiol Renal Physiol. 2016;311:F186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gregori M, Tocci G, Giammarioli B, Befani A, Ciavarella GM, Ferrucci A, Paneni F. Abnormal regulation of renin angiotensin aldosterone system is associated with right ventricular dysfunction in hypertension. Can J Cardiol. 2014;30:188–94.

    Article  PubMed  Google Scholar 

  3. Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell. 2001;104:503–16.

    Article  CAS  PubMed  Google Scholar 

  4. Guo H, Kalra PA, Gilbertson DT, Liu J, Chen SC, Collins AJ, Foley RN. Atherosclerotic renovascular disease in older US patients starting dialysis, 1996 to 2001. Circulation. 2007;115:50–8.

    Article  PubMed  Google Scholar 

  5. U.S. Renal Data System. USRD 2009 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2009.

    Google Scholar 

  6. Huang P, Shen Z, Liu J, Huang Y, Chen S, Yu W, et al. Hydrogen sulfide inhibits high-salt diet-induced renal oxidative stress and kidney injury in Dahl rats. Oxid Med Cell Longev. 2016;2016:2807490.

    Article  PubMed  Google Scholar 

  7. Huang P, Chen S, Wang Y, Liu J, Yao Q, Huang Y, et al. Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats. Nitric Oxide. 2015;46:192–203.

    Article  CAS  PubMed  Google Scholar 

  8. Sneijder PM, Frenay AR, de Boer RA, Pasch A, Hillebrands JL, Leuvenink HG, van Goor H. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br J Pharmacol. 2015;172:1494–504.

    Article  Google Scholar 

  9. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al. Hydrogen sulfide and tempol treatments improve the blood pressure and renal excretory responses in spontaneously hypertensive rats. Ren Fail. 2014;36:598–605.

    Article  CAS  PubMed  Google Scholar 

  10. Sneijder PM, Frenay AR, Konning AM, Bachtler M, Pasch A, Kwakernaak AJ, et al. Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide. 2014;42:87–98.

    Article  Google Scholar 

  11. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiological relaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science. 2008;322:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xia M, Chen L, Muh RW, Li PL, Li N. Production and action of hydrogen sulfide, a novel gaseous bioactive substance in the kidneys. J Pharmacol Exp Ther. 2009;329:1056–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res. 2014;114:730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mikami Y, Shinuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J. 2011;439:479–85.

    Article  CAS  PubMed  Google Scholar 

  15. Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron transport flow and supports cellular biogenesis. FASEB J. 2013;27:601–11.

    Article  CAS  PubMed  Google Scholar 

  16. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. 2013;4:1366.

    Article  PubMed  Google Scholar 

  17. Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide. 2014;41:4–10.

    Article  CAS  PubMed  Google Scholar 

  18. Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, Henning RH. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming—the role of renal H2S-producing enzymes. Eur J Pharmacol. 2015;769:225–33.

    Article  CAS  PubMed  Google Scholar 

  19. Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning HR. Induction of a torpor-like state by 5′-AMP does not depend on H2S production. PLoS One. 2015;10(8):e0136113.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S, et al. Distribution of hydrogen sulfide (H2S)-producing enzymes and the roles of the H2S donor sodium hydrosulfide in diabetic nephropathy. Clin Exp Nephrol. 2013;17(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  21. Bos EM, Leuvinink HG, Snijder PM, et al. Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol. 2009;20(9):1901–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee HJ, Mariappan MM, Feliers D, Cavaglieri RC, Sataranatarajan K, Abboud HE, et al. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem. 2012;387(7):4451–61.

    Article  Google Scholar 

  23. Bos EM, Wang R, Snijder PM, et al. Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol. 2013;24(5):759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J Med Chem. 2010;53:6275–86.

    Article  CAS  PubMed  Google Scholar 

  25. Kashfi K, Olso KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol. 2013;85:689–703.

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117:2351–60.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao FL, Fang F, Qiao PF, Yan N, Gao D, Yan Y. AP39, a mitochondria-targeted hydrogen sulfide donor, supports cellular bioenergetics and protects against Alzheimer’s disease by preserving mitochondrial function in APP/PS1 mice and neurons. Oxid Med Cell Longev. 2016;2016:8360738.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Szczesny B, Modis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide. 2014;41:120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad A, Olah G, Szczesny B, Wood ME, Whiteman M, Szabo C. AP39, a mitochondrially-targeted hydrogen sulfide donor, exerts protective effects in renal epithelial cells subjected to oxidative stress in vitro and in acute renal injury in vivo. Shock. 2016;45:88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RB, et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A. 2007;104:17977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ginter E, Simko V. Garlic (Allium sativum L.) and cardiovascular diseases. Bratisl Lek Listy. 2010;111:452–6.

    CAS  PubMed  Google Scholar 

  32. Polhemus DJ, Li Z, Pattillo CB, Gojon G Sr, Gojon G Jr, Giordano T, Krum H. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther. 2015;33(4):216–26.

    Article  CAS  PubMed  Google Scholar 

  33. Qian X, Li X, Ma F, Luo S, Ge R, Zhu Y. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun. 2016;473(4):931–8.

    Article  CAS  PubMed  Google Scholar 

  34. Snijder PM, Frenay AR, Koning AM, et al. Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide. 2014;42:87–98.

    Article  CAS  PubMed  Google Scholar 

  35. Safar MM, Abdelsalam RM. H2S donors attenuate diabetic nephropathy in rats: modulation of oxidant status and polyol pathway. Pharmacol Rep. 2015;67(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 2001;20:6008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun Y, Huang Y, Zhang R, Chen Q, Chen J, Zong Y, et al. Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. J Mol Med. 2015;93:439–55.

    Article  CAS  PubMed  Google Scholar 

  38. Tang G, Wu L, Liang W, Wang R. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol. 2005;68:1757–64.

    Article  CAS  PubMed  Google Scholar 

  39. Liu YH, Yan CD, Bian JS. Hydrogen sulfide: a novel signaling molecule in the vascular system. J Cardiovasc Pharmacol. 2011;58:560–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wang R. Signaling pathways for the vascular effects of hydrogen sulfide. Curr Opin Nephrol Hypertens. 2011;20:107–12.

    Article  CAS  PubMed  Google Scholar 

  41. Chitnis MK, Njie-Mbye YF, Opare CA, Wood ME, Whiteman M, Ohia SE. Pharmacological actions of the slow release hydrogen sulfide donor GYY4137 on phenylephrine-induced tone in isolated bovine ciliary artery. Exp Eye Res. 2013;116:350–4.

    Article  CAS  PubMed  Google Scholar 

  42. Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens. 2009;27:2174–85.

    Article  CAS  PubMed  Google Scholar 

  43. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem. 2009;146:623–6.

    Article  CAS  PubMed  Google Scholar 

  44. Holwerda KM, Burke SD, Faas MM, Zsengeller Z, Stillman IE, Kang PM, et al. Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J Am Soc Nephrol. 2014;25:717–25.

    Article  CAS  PubMed  Google Scholar 

  45. Yan H, Du J, Tang C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun. 2004;313:22–7.

    Article  CAS  PubMed  Google Scholar 

  46. Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, Yao T, Zhu YC. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;293:H2093–100.

    Article  CAS  PubMed  Google Scholar 

  47. Zhong G, Chen F, Chen Y, Tang C, Du J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens. 2003;21:1879–85.

    Article  CAS  PubMed  Google Scholar 

  48. DeLeon ER, Stoy GF, Olson KR. Passive loss of hydrogen sulfide in biological experiments. Anal Biochem. 2011;421:459–88.

    Google Scholar 

  49. Elkayam A, Peleg E, Grossman E, Shabtay Z, Sharabi Y. Effects of allicin on cardiovascular risk factors in spontaneously hypertensive rats. Isr Med Assoc J. 2013;15:170–3.

    PubMed  Google Scholar 

  50. Al-Qattan KK, Thomson M, Al-Mutawa’a S, Al-Hajeri D, Drobiova H, Ali M. Nitric oxide mediates the blood pressure-lowering effect of garlic in the two-kidney, one-clip model of hypertension. J Nutr. 2006;136:774S–6S.

    Article  CAS  PubMed  Google Scholar 

  51. Weber GJ, Pushpakumar S, Tyagi SC, Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res. 2016;113(Pt A):300–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao X, Zhang LK, Zhang CY, Zeng XY, Yan H, Jin HF, Tang CS, Du JB. Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. Hypertens Res. 2008;31:1619–30.

    Article  CAS  PubMed  Google Scholar 

  53. Roy A, Khan AH, Islam MT, Prieto MC, Majid DS. Interdependency of cystathionine γ-lyase and cystathionine β-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am J Hypertens. 2012;25:74–81.

    Article  CAS  PubMed  Google Scholar 

  54. Wagner CA. Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator. J Nephrol. 2009;22:173–6.

    CAS  PubMed  Google Scholar 

  55. d’Emmanuele di Villa Bianca R, Mitidieri E, Donnarumma E, Tramontano T, Brancaleone V, Cirino G, Bucci M, Sorrentino R. Hydrogen sulfide is involved in dexamethasone-induced hypertension in rat. Nitric Oxide. 2015;46:80–6.

    Article  PubMed  Google Scholar 

  56. Chen L, Ingrid S, Ding YG, Lui Y, Qi JG, Tang CS, Du JB. Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin Med J. 2007;120:389–93.

    Article  CAS  PubMed  Google Scholar 

  57. Sun NL, Xi Y, Yang SN, Ma Z, Tang CS. [Plasma hydrogen sulfide and homocysteine levels in hypertensive patients with different blood pressure levels and complications]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35:1145–1148.

    Google Scholar 

  58. Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation. 2013;127:2514–22.

    Article  CAS  PubMed  Google Scholar 

  59. Oosterhuis NR, Frenay AR, Wesseling S, Snijder PM, Slaats GG, Yazdani S, et al. DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin II infused rats. Nitric Oxide. 2015;49:56–66.

    Article  CAS  PubMed  Google Scholar 

  60. Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, et al. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol. 2007;292:H1953–60.

    Article  CAS  PubMed  Google Scholar 

  61. Ali MY, Ping CY, Mok YY, Ling L, Whiteman M, Bhatia M, Moore PK. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulfide? Br J Pharmacol. 2006;149:625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holwerda KM, Bos EM, Rajakumar A, Ris-Stalpers C, van Pampus MG, Timmer A, et al. Hydrogen sulfide producing enzymes in pregnancy and preeclampsia. Placenta. 2012;33:518–21.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang J, Chen S, Liu H, Zhang B, Zhao Y, Ma K, et al. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5)P3 dependent pathway. PLoS One. 2013;8:e64304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu JH, et al. Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na+/K+-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid Redox Signal. 2014;21:2061–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leong PK, Devillez A, Sandberg MB, et al. Effects of ACE inhibition on proximal tubule sodium transport. Am J Physiol Renal Physiol. 2006;290:F854–63.

    Article  CAS  PubMed  Google Scholar 

  66. Welch WJ, Patel K, Modlinger P, Mendonca M, Kawada N, Dennehy K, Aslam S, Wilcox CS. Roles of vasoconstrictor prostaglandins, COX-1 and -2, and AT1, AT2, and TP receptors in a rat model of early 2K,1C hypertension. Am J Physiol Heart Circ Physiol. 2007;293:H2644–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lu M, Liu YH, Goh HS, Wang JJ, Yong QC, Wang R, Bian JS. Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol. 2010;21:993–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu M, Ho CY, Liu YH, Tiong CS, Bian JS. Hydrogen sulfide regulates cAMP homeostasis and renin degranulation in As4.1 and primary cultured juxtaglomerular cells. Am J Physiol. 2012;302:C59–66.

    Article  CAS  Google Scholar 

  69. Xue H, Zhou S, Xiao L, Guo Q, Liu S, Wu Y. Hydrogen sulfide improves the endothelial dysfunction in renovascular hypertensive rats. Physiol Res. 2015;64(5):663–72.

    Article  CAS  PubMed  Google Scholar 

  70. Laggner H, Hermann M, Esterbauer H, Muellner MK, Exner M, Gmeiner BM, Kapiotis S. The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens. 2007;25:2100–4.

    Article  CAS  PubMed  Google Scholar 

  71. Wolf G. Link between angiotensin II and TGF-beta in the kidney. Miner Electrolyte Metab. 1998;24:174–80.

    Article  CAS  PubMed  Google Scholar 

  72. Sinha K, Dabla PK. Oxidative stress and antioxidants in hypertension—a current review. Curr Hypertens Rev. 2015;11:132–42.

    Article  CAS  PubMed  Google Scholar 

  73. Welch WJ, Ott CE, Guthrie GP Jr, Kotchen TA. Mechanism of increased renin release in the adrenalectomized rat. Adrenal insufficiency and renin. Hypertension. 1983;5:I47–52.

    Article  CAS  PubMed  Google Scholar 

  74. Just A, Whitten CL, Arendshorst WJ. Reactive oxygen species participate in acute renal vasoconstrictor responses induced by ETA and ETB receptors. Am J Physiol Renal Physiol. 2008;294:F719–28.

    Article  CAS  PubMed  Google Scholar 

  75. Ohsaki Y, O’Connor MT, Ryan RP, Dickinson BC, Chang CJ, et al. Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat medullary thick ascending limb. Am J Physiol Renal Physiol. 2012;302:F95–F102.

    Article  CAS  PubMed  Google Scholar 

  76. Kawada N, Imai E, Karber A, Welch WJ, Wilcox CS. A mouse model of angiotensin II slow pressor response: role of oxidative stress. J Am Soc Nephrol. 2002;13:2860–8.

    Article  CAS  PubMed  Google Scholar 

  77. Schnackenberg CG, Wilcox CS. Two-week administration of tempol attenuates both hypertension and renal excretion of 8-Iso prostaglandin f2alpha. Hypertension. 1999;33:424–8.

    Article  CAS  PubMed  Google Scholar 

  78. Welch WJ, Mendonca M, Aslam S, Wilcox CS. Roles of oxidative stress and ATI receptors in renal hemodynamics and oxygenation in the postclipped 2K,1C kidney. Hypertension. 2003;41:692–6.

    Article  CAS  PubMed  Google Scholar 

  79. Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS. Angiotensin II-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol. 2005;288:H22–8.

    Article  CAS  PubMed  Google Scholar 

  80. Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol. 2005;289:R913–35.

    Article  CAS  PubMed  Google Scholar 

  81. Sakamoto A, Hongo M, Saito K, Nagai R, Ishizaka N. Reduction of renal lipid content and proteinuria by a PPAR-gamma agonist in a rat model of angiotensin II-induced hypertension. Eur J Pharmacol. 2012;682:131–6.

    Article  CAS  PubMed  Google Scholar 

  82. Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004;18:1165–77.

    Article  CAS  PubMed  Google Scholar 

  83. Szabo C. Hydrogen sulfide and its therapeutic potential. Nat Rev Drug Discov. 2007;6:917–35.

    Article  CAS  PubMed  Google Scholar 

  84. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009;105:365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kimura Y, Goto YI, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12:1–13.

    Article  CAS  PubMed  Google Scholar 

  86. Shimada S, Fukai M, Wakayama K, Ishikawa T, Kobayahsi N, Kimura T, et al. Hydrogen sulfide augments survival signals in warm ischemia and reperfusion of the mouse liver. Surg Today. 2015;45:892–903.

    Article  CAS  PubMed  Google Scholar 

  87. Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wister rats. Eur J Pharmacol. 2009;606:162–71.

    Article  CAS  PubMed  Google Scholar 

  88. Roson MI, Della Penna SL, Cao G, Gorzalczany S, Pandilfo M, Toblli JE, Fernandez BE. Different protective actions of losartan and tempol on the renal inflammatory response to acute sodium overload. J Cell Physiol. 2010;22:41–8.

    Article  Google Scholar 

  89. Liu J, Yang F, Yang XP, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 2003;23:776–82.

    Article  CAS  PubMed  Google Scholar 

  90. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709–20.

    Article  CAS  PubMed  Google Scholar 

  91. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006;20:2118–20.

    Article  CAS  PubMed  Google Scholar 

  92. Varo N, Etayo JC, Zalba G, Beaumont J, Iraburu MJ, Montiel C, et al. Losartan inhibits the post-transcriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats. J Hypertens. 1999;17:107–14.

    Article  CAS  PubMed  Google Scholar 

  93. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W. Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int. 2006;69:105–13.

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez-Vita J, Sabchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M. Angiotensin II activates the smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005;111:2509–17.

    Article  CAS  PubMed  Google Scholar 

  96. Guo L, Peng W, Tao J, Lan Z, Hei H, Tian L, Pan W, Wang L, Zhang X. Hydrogen sulfide inhibits transforming growth factor-β1-induced EMT via WNT/catenin pathway. PLoS One. 2016;11:e0147018.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pushpakumar S, Kundu S, Pryor T, et al. Angiotensin-II induced hypertension and renovascular remodeling in TIMP2 knockout mice. J Hypertens. 2013;31(11):2270–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pushpakumar S, Kundu S, Metreveli N, Tyagi SC, Sen U. Matrix metalloproteinase inhibition mitigates renovascular remodeling in salt-sensitive hypertension. Physiol Rep. 2013;31(11):2270–81.

    CAS  Google Scholar 

  99. Kundu S, Pushpakumar SB, Tyagi A, Coley D, Sen U. Hydrogen sulfide deficiency and diabetic renal remodeling: role of matrix metalloproteinase-9. Am J Physiol Endocrinol Metab. 2013;304(12):E1365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kundu S, Pushpakumar S, Sen U. MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide. 2015;46:172–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sun L, Jin H, Sun L, et al. Hydrogen sulfide alleviates myocardial collagen remodeling in association with inhibition of TGF-β/Smad signaling pathway in spontaneously hypertensive rats. Mol Med. 2015;20:503–15.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gao S, Long CL, Wang RH, Wang H. KATP activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function. Cardiovasc Res. 2009;83:444–56.

    Article  CAS  PubMed  Google Scholar 

  103. Huang J, Wang D, Zheng J, Huang X, Jin H. Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Mol Med Rep. 2012;5:923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao T, Zeng O, Luo J, Wu Z, Li F, Yang J. Effects of hydrogen sulfide on myocardial fibrosis in diabetic rat: changes in matrix metalloproteinases parameters. Biomed Mater Eng. 2015;26 Suppl 1:S2033–9.

    PubMed  Google Scholar 

  105. Baylis C, Vallance P. Nitric oxide and blood pressure: effects of nitric oxide deficiency. Curr Opin Nephrol Hypertens. 1996;5:80–8.

    Article  CAS  PubMed  Google Scholar 

  106. Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol. 2008;294:F1–9.

    Article  CAS  PubMed  Google Scholar 

  107. Zatz R, de Nucci G. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol. 1991;261(2 Pt 2):F360–3.

    CAS  PubMed  Google Scholar 

  108. Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest. 1992;90:278–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Verhagen AM, Koomans HA, Joles JA. Predisposition of spontaneously hypertensive rats to develop renal injury during nitric oxide synthase inhibition. Eur J Pharmacol. 2001;411:175–80.

    Article  CAS  PubMed  Google Scholar 

  110. Ortiz PA, Garvin JL. Cardiovascular and renal control in NOS-deficient mouse models. Am J Physiol Regul Integr Comp Physiol. 2003;284:R628–38.

    Article  CAS  PubMed  Google Scholar 

  111. Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Agarwal A, Nick HS. Renal response to tissue injury: lessons from heme oxygenase-1 gene ablation and expression. J Am Soc Nephrol. 2000;11:965–73.

    Article  CAS  PubMed  Google Scholar 

  113. Wiesel P, Patel AP, Carvajal IM, et al. Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1-deficient mice. Circ Res. 2001;88:1088–94.

    Article  CAS  PubMed  Google Scholar 

  114. Shiraishi F, Curtis LM, Truong L, et al. Heme oxygenase-1 ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Renal Physiol. 2000;278:F726–36.

    Article  CAS  PubMed  Google Scholar 

  115. Rodriguez F, Lamon BD, Gong W, Kemp R, Nasjletti A. Nitric oxide synthesis inhibition promotes renal production of carbon monoxide. Hypertension. 2004;43:347–51.

    Article  CAS  PubMed  Google Scholar 

  116. Botros FT, Navar LG. Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles. Am J Physiol Heart Circ Physiol. 2006;291:H2772–8.

    Article  CAS  PubMed  Google Scholar 

  117. Rong-na L, Xiang-jun Z, Yu-han C, Ling-qiao L, Gang H. Interaction between hydrogen sulfide and nitric oxide on cardiac protection in rats with metabolic syndrome. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2011;33:25–32.

    PubMed  Google Scholar 

  118. Oosterhuis NR, Frenay AR, Wesseling S, et al. DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats. Nitric Oxide. 2015;49:56–66.

    Article  CAS  PubMed  Google Scholar 

  119. Wesseling S, Fledderus JO, Verhaar MC, Joles JA. Beneficial effects of diminished production of hydrogen sulfide and carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol. 2015;172(6):1607–19.

    Article  CAS  PubMed  Google Scholar 

  120. Wesseling S, Joles JA, van Goor H, et al. Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-dependent rats. Physiol Genomics. 2007;28:158–67.

    Article  CAS  PubMed  Google Scholar 

  121. Spivacow FR, Del Valle EE, Lores E, Rey PG. Kidney stones: composition, frequency and relation to metabolic diagnosis. Medicina (B Aires). 2016;76(6):343–8.

    CAS  PubMed  Google Scholar 

  122. Mugiya S, Ito T, Maruyama S, Hadano S, Nagae H. Endoscopic features of impacted ureteral stones. J Urol. 2004;171(1):89–91.

    Article  PubMed  Google Scholar 

  123. Gottlieb M, Long B, Koyfman A. The evaluation and management of urolithiasis in the ED: a review of the literature. Am J Emerg Med. 2018;36(4):699–706.

    Article  PubMed  Google Scholar 

  124. Pfau A, Knauf F. Update on nephrolithiasis: core curriculum 2016. Am J Kidney Dis. 2016;68(6):973–85.

    Article  PubMed  Google Scholar 

  125. Rule AD, Lieske JC, Li X, Melton LJ 3rd, Krambeck AE, Bergstralh EJ. The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol. 2014;25:2878–86.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G. Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol. 2011;185(4):1304–11.

    Article  PubMed  Google Scholar 

  127. Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med. 1995;98(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  128. Pak CY, Kaplan R, Bone H, Townsend J, Waters O. A simple test for the diagnosis of absorptive, resorptive and renal hypercalciurias. N Engl J Med. 1975;292(10):497–500.

    Article  CAS  PubMed  Google Scholar 

  129. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59:270–6.

    Article  CAS  PubMed  Google Scholar 

  130. Hesse A, Schneeberger W, Engfeld S, von Unruh GD, Sauerbruch T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with [13C2]oxalate. J Am Soc Nephrol. 1999;10:S329–33.

    CAS  PubMed  Google Scholar 

  131. Knauf F, Velazquez H, Pfann V, Jiang Z, Aronson PS. Characterization of renal NaCl and oxalate transport in Slc26a6−/− mice. Am J Physiol Renal Physiol. 2019;316:F128–33.

    Article  CAS  PubMed  Google Scholar 

  132. Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V. Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep. 2017;7(1):1798.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Maruyama M, Sawada KP, Tanaka Y, Okada A, Momma K, Nakamura M, Mori R, Furukawa Y, Sugiura Y, Tajiri R, Taguchi K, Hamamoto S, Ando R, Tsukamoto K, Takano K, Imanishi M, Yoshimura M, Yasui T, Mori Y. Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS One. 2023;18(3):e0282743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guerra A, Ticinesi A, Allegri F, Pinelli S, Aloe R, Meschi T. Idiopathic calcium nephrolithiasis with pure calcium oxalate composition: clinical correlates of the calcium oxalate dihydrate/monohydrate (COD/COM) stone ratio. Urolithiasis. 2020;48(3):271–9.

    Article  CAS  PubMed  Google Scholar 

  135. Vaitheeswari S, Sriram R, Brindha P, Kurian GA. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites. Int Braz J Urol. 2015;41(3):503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lai Y, Liang X, Zhong F, Wu W, Zeng T, Huang J, Duan X, Li S, Zeng G, Wu W. Allicin attenuates calcium oxalate crystal deposition in the rat kidney by regulating gap junction function. J Cell Physiol. 2019;234(6):9640–51.

    Article  CAS  PubMed  Google Scholar 

  137. Agroyannis B, Tzanatos H, Vlahakos DV, Mallas E. Does long-term administration of sodium thiosulphate inhibit progression to renal failure in nephrocalcinosis? Nephrol Dial Transplant. 2001;16(12):2443–4.

    Article  CAS  PubMed  Google Scholar 

  138. Agroyannis BJ, Koutsikos DK, Tzanatos HA, Konstadinidou IK. Sodium thiosulphate in the treatment of renal tubular acidosis I with nephrocalcinosis. Scand J Urol Nephrol. 1994;28(1):107–8.

    Article  CAS  PubMed  Google Scholar 

  139. Yatzidis H. Absence or decreased endogenous thiosulfaturia: a cause of recurrent calcium nephrolithiasis. Int Urol Nephrol. 2004;36(4):587–9.

    Article  PubMed  Google Scholar 

  140. Asplin JR, Donahue SE, Lindeman C, Michalenka A, Strutz KL, Bushinsky DA. Thiosulfate reduces calcium phosphate nephrolithiasis. J Am Soc Nephrol. 2009;20(6):1246–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zakharov S, Vaneckova M, Seidl Z, Diblik P, Kuthan P, Urban P, Navratil T, Pelclova D. Successful use of hydroxocobalamin and sodium thiosulfate in acute cyanide poisoning: a case report with follow-up. Basic Clin Pharmacol Toxicol. 2015;117:209–12.

    Article  CAS  PubMed  Google Scholar 

  142. Burnie R, Smail S, Javaid MM. Calciphylaxis and sodium thiosulfate: a glimmer of hope in desperate situation. J Ren Care. 2013;39:71–6.

    Article  PubMed  Google Scholar 

  143. Nigweker SU, Brunelli SM, Meade D, Wang W, Hymes J, Lacson E Jr. Sodium thiosulfate therapy for calcific uremic arteriolopathy. Clin J Am Soc Nephrol. 2013;8:1162–70.

    Article  Google Scholar 

  144. Sparatore A, Perrino E, Tazzari V, Giustarini D, Rossi R, Rossoni G, et al. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic Biol Med. 2009;46:586–92.

    Article  CAS  PubMed  Google Scholar 

  145. Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr. 2013;67:64–70.

    Article  CAS  PubMed  Google Scholar 

  146. Toombs CF, Insko MA, Wintner EA, Deckwerth TL, Usansky H, Jamil K, et al. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol. 2010;69:626–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Dugbartey .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dugbartey, G.J. (2023). Hydrogen Sulfide for the Treatment of Hypertensive Nephropathy and Calcium-Based Nephrolithiasis. In: Hydrogen Sulfide in Kidney Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-44041-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44041-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44040-3

  • Online ISBN: 978-3-031-44041-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics