Skip to main content

Alias-Free Co-modulated Network for Cross-Modality Synthesis and Super-Resolution of MR Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Cross-modality synthesis (CMS) and super-resolution (SR) have both been extensively studied with learning-based methods, which aim to synthesize desired modality images and reduce slice thickness for magnetic resonance imaging (MRI), respectively. It is also desirable to build a network for simultaneous cross-modality and super-resolution (CMSR) so as to further bridge the gap between clinical scenarios and research studies. However, these works are limited to specific fields. None of them can flexibly adapt to various combinations of resolution and modality, and perform CMS, SR, and CMSR with a single network. Moreover, alias frequencies are often treated carelessly in these works, leading to inferior detail-restoration ability. In this paper, we propose Alias-Free Co-Modulated network (AFCM) to accomplish all the tasks with a single network design. To this end, we propose to perform CMS and SR consistently with co-modulation, which also provides the flexibility to reduce slice thickness to various, non-integer values for SR. Furthermore, the network is redesigned to be alias-free under the Shannon-Nyquist signal processing framework, ensuring efficient suppression of alias frequencies. Experiments on three datasets demonstrate that AFCM outperforms the alternatives in CMS, SR, and CMSR of MR images. Our codes are available at https://github.com/zhiyuns/AFCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://brain-development.org/ixi-dataset/.

  2. 2.

    https://adni.loni.usc.edu/.

References

  1. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  2. Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 80(5), 2139–2154 (2018)

    Article  Google Scholar 

  3. Chen, Y., Xie, Y., Zhou, Z., Shi, F., Christodoulou, A.G., Li, D.: Brain MRI super resolution using 3D deep densely connected neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 739–742 (2018)

    Google Scholar 

  4. Dalmaz, O., Yurt, M., Çukur, T.: ResViT: residual vision transformers for multimodal medical image synthesis. IEEE Trans. Med. Imaging 41(10), 2598–2614 (2022)

    Article  Google Scholar 

  5. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Cukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  6. Greve, D.N., Fischl, B.: Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48(1), 63–72 (2009)

    Article  Google Scholar 

  7. Hu, X., Shen, R., Luo, D., Tai, Y., Wang, C., Menze, B.H.: AutoGAN-synthesizer: neural architecture search for cross-modality MRI synthesis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 397–409. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_38

    Chapter  Google Scholar 

  8. Huang, J., Chen, C., Axel, L.: Fast multi-contrast MRI reconstruction. Magn. Reson. Imaging 32(10), 1344–1352 (2014)

    Article  Google Scholar 

  9. Huang, Y., Shao, L., Frangi, A.F.: Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  10. Iglesias, J.E., et al.: Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. Neuroimage 237, 118206 (2021)

    Article  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  12. Kalluri, T., Pathak, D., Chandraker, M., Tran, D.: FLAVR: flow-agnostic video representations for fast frame interpolation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2071–2082 (2023)

    Google Scholar 

  13. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12104–12114 (2020)

    Google Scholar 

  14. Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 34, pp. 852–863 (2021)

    Google Scholar 

  15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  16. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  17. Krupa, K., Bekiesińska-Figatowska, M.: Artifacts in magnetic resonance imaging. Pol. J. Radiol. 80, 93 (2015)

    Article  Google Scholar 

  18. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

    Google Scholar 

  19. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A., Hamed, H.F.: A review on brain tumor diagnosis from MRI images: practical implications, key achievements, and lessons learned. Magn. Reson. Imaging 61, 300–318 (2019)

    Article  Google Scholar 

  20. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  21. Miyato, T., Koyama, M.: cGANs with projection discriminator. In: International Conference on Learning Representations (2018)

    Google Scholar 

  22. Moraal, B., et al.: Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis. Neuroradiol. J. 22(1_suppl), 33–42 (2009)

    Google Scholar 

  23. Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3), 907–922 (2011)

    Article  Google Scholar 

  24. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695 (2022)

    Google Scholar 

  25. Sauer, A., Schwarz, K., Geiger, A.: StylegAN-XL: scaling StyleGAN to large diverse datasets. In: ACM SIGGRAPH 2022 Conference Proceedings (2022)

    Google Scholar 

  26. Shannon, C.: Communities in the presence of noise. Proc. Instit. Radio Eng. 37(1), 10–21 (1949)

    Google Scholar 

  27. Zhao, S., et al.: Large scale image completion via co-modulated generative adversarial networks. In: International Conference on Learning Representations (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 62001292 and No. 82227807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichi Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12606 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Z. et al. (2023). Alias-Free Co-modulated Network for Cross-Modality Synthesis and Super-Resolution of MR Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics