Skip to main content

Inverse Consistency by Construction for Multistep Deep Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Inverse consistency is a desirable property for image registration. We propose a simple technique to make a neural registration network inverse consistent by construction, as a consequence of its structure, as long as it parameterizes its output transform by a Lie group. We extend this technique to multi-step neural registration by composing many such networks in a way that preserves inverse consistency. This multi-step approach also allows for inverse-consistent coarse to fine registration. We evaluate our technique on synthetic 2-D data and four 3-D medical image registration tasks and obtain excellent registration accuracy while assuring inverse consistency .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although in infinite dimensions, the name Lie algebra does not apply, in our case we only need the notions of the exponential map and tangent space at identity to preserve the inverse consistency property.

  2. 2.

    Specifically, \(\texttt {networks.tallUNet2}\) and \(\texttt {networks.ConvolutionalMatrixNet}\) from the library icon_registration version 1.1.1 on pypi.

  3. 3.

    https://tinyurl.com/msk56ss5.

  4. 4.

    https://nda.nih.gov/oai.

  5. 5.

    Due to changes in the OASIS-1 data, our test set slightly differs from [14]. We evaluate all methods using our testing protocol so that results are consistent.

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Media 12(1), 26–41 (2008)

    Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. TMI 38(8), 1788–1800 (2019)

    Google Scholar 

  4. Castillo, R., et al.: A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive. Phys. Med. Biol. 58(9), 2861 (2013)

    Article  Google Scholar 

  5. Christensen, G.E., Johnson, H.J.: Consistent image registration. TMI 20(7), 568–582 (2001)

    Google Scholar 

  6. Eade, E.: Lie groups for 2D and 3D transformations (2013). http://ethaneade.com/lie.pdf. Revised Dec 117, 118

  7. Greer, H., Kwitt, R., Vialard, F.X., Niethammer, M.: ICON: learning regular maps through inverse consistency. In: ICCV (2021)

    Google Scholar 

  8. Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. TMI 41(3), 543–558 (2022)

    Google Scholar 

  9. Hoopes, A., Hoffmann, M., Greve, D.N., Fischl, B., Guttag, J., Dalca, A.V.: Learning the effect of registration hyperparameters with HyperMorph. arXiv preprint arXiv:2203.16680 (2022)

  10. Iglesias, J.E.: EasyReg: a ready-to-use deep learning tool for symmetric affine and nonlinear brain MRI registration (2023)

    Google Scholar 

  11. Lie, S.: Theorie der transformationsgruppen i. Math. Ann. 16, 441–528 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  13. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  Google Scholar 

  14. Mok, T.C., Chung, A.C.: Fast symmetric diffeomorphic image registration with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Nazib, A., Fookes, C., Salvado, O., Perrin, D.: A multiple decoder CNN for inverse consistent 3D image registration. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 904–907 (2021). https://doi.org/10.1109/ISBI48211.2021.9433911

  16. Nevitt, M.C., Felson, D.T., Lester, G.: The osteoarthritis initiative. Protocol Cohort Study 1 (2006)

    Google Scholar 

  17. Petersen, R., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010). https://doi.org/10.1212/WNL.0b013e3181cb3e25

    Article  Google Scholar 

  18. Regan, E.A., et al.: Genetic epidemiology of COPD (COPDGene) study design. COPD: J. Chronic Obstr. Pulm. Dis. 7(1), 32–43 (2011)

    Google Scholar 

  19. Reuter, M., Rosas, H.D., Fischl, B.: Highly accurate inverse consistent registration: a robust approach. NeuroImage 53(4), 1181–1196 (2010). https://doi.org/10.1016/j.neuroimage.2010.07.020. https://www.sciencedirect.com/science/article/pii/S1053811910009717

  20. Rushmore, R.J., et al.: Anatomically curated segmentation of human subcortical structures in high resolution magnetic resonance imaging: an open science approach. Front. Neuroanat. 16 (2022)

    Google Scholar 

  21. Rushmore, R.J., et al.: HOA-2/SubcorticalParcellations: release-50-subjects-1.1.0 (2022). https://doi.org/10.5281/zenodo.7080547

  22. Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: CVPR (2019)

    Google Scholar 

  23. Tian, L., et al.: GradICON: approximate diffeomorphisms via gradient inverse consistency (2022). https://doi.org/10.48550/ARXIV.2206.05897

  24. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  25. Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. TMI 36(2), 385–395 (2017)

    Google Scholar 

  26. Wang, D., et al.: PLOSL: population learning followed by one shot learning pulmonary image registration using tissue volume preserving and vesselness constraints. Media 79, 102434 (2022)

    Google Scholar 

  27. Zhang, J.: Inverse-consistent deep networks for unsupervised deformable image registration. CoRR abs/1809.03443 (2018). http://arxiv.org/abs/1809.03443

Download references

Acknowledgements

This research was supported by NIH awards RF1MH126732, 1R01-AR072013, 1R01-HL149877, 1R01 EB028283, R41-MH118845, R01MH112748, 5R21LM013670, R01NS125307, 2-R41-MH118845; by the Austrian Science Fund: FWF P31799-N38; and by the Land Salzburg (WISS 2025): 20102-F1901166-KZP, 20204-WISS/225/197-2019. The work expresses the views of the authors and not of the funding agencies. The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hastings Greer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greer, H. et al. (2023). Inverse Consistency by Construction for Multistep Deep Registration. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics