Skip to main content

Nonuniformly Spaced Control Points Based on Variational Cardiac Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Non-uniformly spaced control points located on the interface of different objects are beneficial for constructing an accurate displacement field for image registration. However, extracting features of non-uniformly spaced control points in images is challenging for convolutional neural networks (CNNs). We extend a probabilistic image registration model using uniformed-spaced control points by employing non-uniformly-spaced control points. We construct a network to extract the image and spatial features of non-uniformly-spaced control points. Moreover, a variational Bayesian (VB) model using a factorized prior is employed to estimate the distribution of latent variables. In theory, we analyze the KL divergence between the posterior and the two separated priors. We found that the factorized prior has the advantage of decreasing the KL divergence, but too more factorized priors, such as the standard normal, might deteriorate registration accuracy. Moreover, we analyze the relationship between the uncertainty of the displacement field and the spatial distribution of control points. Experimental results on four public datasets show that our network outperforms the state-of-arts registration networks and can provide registration uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12(3), 335–357 (2008)

    Article  Google Scholar 

  2. Arar, M., Ginger, Y., Danon, D., Bermano, A.H., Cohen-Or, D.: Unsupervised multi-modal image registration via geometry preserving image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13410–13419 (2020)

    Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Bernard, O., Lalande, A., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  6. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &Ms challenge. IEEE Trans. Med. Imaging 9458279 (2021)

    Google Scholar 

  7. Cao, H., Wang, H., Zhang, N., Yang, Y., Zhou, Z.: Robust probability model based on variational bayes for point set registration. Knowl.-Based Syst. 241, 108182 (2022)

    Google Scholar 

  8. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  9. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  10. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  11. Gan, Z., Sun, W., Liao, K., Yang, X.: Probabilistic modeling for image registration using radial basis functions: application to cardiac motion estimation. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  12. Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342 (2021)

  13. Grzech, D., et al.: A variational Bayesian method for similarity learning in non-rigid image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 119–128 (2022)

    Google Scholar 

  14. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71, 102036 (2021)

    Google Scholar 

  15. Kim, B., Kim, J., Lee, J.-G., Kim, D.H., Park, S.H., Ye, J.C.: Unsupervised deformable image registration using cycle-consistent CNN. In: Shen, S., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 166–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_19

    Chapter  Google Scholar 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  17. Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging 38(9), 2165–2176 (2019)

    Article  Google Scholar 

  18. Liang, L., et al.: Dual-features student-T distribution mixture model based remote sensing image registration. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  19. Liu, L., Hu, X., Zhu, L., Heng, P.-A.: Probabilistic multilayer regularization network for unsupervised 3D brain image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 346–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_39

    Chapter  Google Scholar 

  20. Liu, R., Li, Z., Zhang, Y., Fan, X., Luo, Z.: Bi-level probabilistic feature learning for deformable image registration. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 723–730 (2021)

    Google Scholar 

  21. Liu, Y., et al.: A remote sensing image registration algorithm based on multiple constraints and a variational Bayesian framework. Remote Sens. Lett. 12(3), 296–305 (2021)

    Article  Google Scholar 

  22. Nenoff, L., et al.: Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother. Oncol. 147, 178–185 (2020)

    Article  Google Scholar 

  23. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  24. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J.-Cardiac MR Left Ventricle Segment. Challenge 49 (2009)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Schultz, S., Krüger, J., Handels, H., Ehrhardt, J.: Bayesian inference for uncertainty quantification in point-based deformable image registration. In: Medical Imaging 2019: Image Processing, vol. 10949, pp. 459–466. SPIE (2019)

    Google Scholar 

  27. Zhang, A., Min, Z., Zhang, Z., Meng, M.Q.H.: Generalized point set registration with fuzzy correspondences based on variational Bayesian inference. IEEE Trans. Fuzzy Syst. 30, 1529–1540 (2022)

    Article  Google Scholar 

  28. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10600–10610 (2019)

    Google Scholar 

  29. Zhou, J., et al.: Robust variational Bayesian point set registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9905–9914 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Shenzhen Fundamental Research Program (JCYJ20220531102407018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 284 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, H., Yang, X. (2023). Nonuniformly Spaced Control Points Based on Variational Cardiac Image Registration. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics