Skip to main content

Importance Weighted Variational Cardiac MRI Registration Using Transformer and Implicit Prior

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The variational registration model takes advantage of explaining uncertainties of registration results. However, most existing variational registration models are based on convolutional neural networks (CNNs), which cannot capture distant information in images. Besides, the evidence lower bound (ELBO) and the commonly used standard prior cannot close the gap between the real posterior and the variational posterior in the vanilla variational registration model. This paper proposes a network in a variational image registration model for cardiac motion estimation to effectively capture the spatial correspondence of long-distance images and solve the shortcomings of CNNs. Our proposed network comprises a Transformer with a T2T module and the cross attention between the moving and the fixed images. To close the gap between the real posterior and the variational posterior, the importance-weighted evidence lower bound (iwELBO) is introduced into the variational registration model with an implicit prior. The coefficients of a parametric transformation using multi-supports CSRBFs are latent variables in our variational registration model, which improve registration accuracy significantly. Experimental results show that the proposed method outperforms state-of-arts research on public cardiac datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Google Scholar 

  2. Akkari, N., Casenave, F., Daniel, T., Ryckelynck, D.: Data-targeted prior distribution for variational autoencoder. Fluids (2021)

    Google Scholar 

  3. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12(3), 335–357 (2008)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  6. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  7. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. arXiv preprint arXiv:1509.00519 (2015)

  8. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &Ms challenge. IEEE Trans. Med. Imaging 9458279 (2021)

    Google Scholar 

  9. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. arXiv preprint arXiv:2111.10480 (2021)

  10. Connor, M., Canal, G.H., Rozell, C.J.: Variational autoencoder with learned latent structure. ArXiv abs/2006.10597 (2021)

    Google Scholar 

  11. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  12. Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_83

    Chapter  Google Scholar 

  13. Gan, Z., Sun, W., Liao, K., Yang, X.: Probabilistic modeling for image registration using radial basis functions: Application to cardiac motion estimation. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  14. Gong, X., Khaidem, L., Zhu, W., Zhang, B., Doermann, D.: Uncertainty learning towards unsupervised deformable medical image registration. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2484–2493 (2022)

    Google Scholar 

  15. Huang, C.W., Sankaran, K., Dhekane, E., Lacoste, A., Courville, A.: Hierarchical importance weighted autoencoders. In: International Conference on Machine Learning, pp. 2869–2878. PMLR (2019)

    Google Scholar 

  16. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71, 102036 (2021)

    Google Scholar 

  17. Krebs, J., Mansi, T., Mailhé, B., Ayache, N., Delingette, H.: Unsupervised probabilistic deformation modeling for robust diffeomorphic registration. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 101–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_12

    Chapter  Google Scholar 

  18. Liu, R., Li, Z., Zhang, Y., Fan, X., Luo, Z.: Bi-level probabilistic feature learning for deformable image registration. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 723–730 (2021)

    Google Scholar 

  19. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation framework for algorithms segmenting short axis cardiac MRI. The MIDAS J.-Cardiac MR Left Ventricle Segment. Challenge 49 (2009)

    Google Scholar 

  20. Sandkühler, R., Andermatt, S., Bauman, G., Nyilas, S., Jud, C., Cattin, P.C.: Recurrent registration neural networks for deformable image registration. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  21. Sedghi, A., Kapur, T., Luo, J., Mousavi, P., Wells, W.M.: Probabilistic image registration via deep multi-class classification: characterizing uncertainty. In: Greenspan, H., et al. (eds.) CLIP/UNSURE -2019. LNCS, vol. 11840, pp. 12–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32689-0_2

    Chapter  Google Scholar 

  22. Sheikhjafari, A., Noga, M., Punithakumar, K., Ray, N.: Unsupervised deformable image registration with fully connected generative neural network (2018)

    Google Scholar 

  23. Takahashi, H., Iwata, T., Yamanaka, Y., Yamada, M., Yagi, S.: Variational autoencoder with implicit optimal priors. In: AAAI (2019)

    Google Scholar 

  24. Tomczak, J.M., Welling, M.: VAE with a VampPrior. In: AISTATS (2018)

    Google Scholar 

  25. Xu, H., Chen, W., Lai, J., Li, Z., Zhao, Y., Pei, D.: On the necessity and effectiveness of learning the prior of variational auto-encoder. ArXiv abs/1905.13452 (2019)

    Google Scholar 

  26. Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 558–567 (2021)

    Google Scholar 

  27. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10600–10610 (2019)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by the Shenzhen Fundamental Research Program (JCYJ20220531102407018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 629 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, K., Huang, Q., Yang, X. (2023). Importance Weighted Variational Cardiac MRI Registration Using Transformer and Implicit Prior. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics