Skip to main content

Towards Multi-modal Anatomical Landmark Detection for Ultrasound-Guided Brain Tumor Resection with Contrastive Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14228))

Abstract

Homologous anatomical landmarks between medical scans are instrumental in quantitative assessment of image registration quality in various clinical applications, such as MRI-ultrasound registration for tissue shift correction in ultrasound-guided brain tumor resection. While manually identified landmark pairs between MRI and ultrasound (US) have greatly facilitated the validation of different registration algorithms for the task, the procedure requires significant expertise, labor, and time, and can be prone to inter- and intra-rater inconsistency. So far, many traditional and machine learning approaches have been presented for anatomical landmark detection, but they primarily focus on mono-modal applications. Unfortunately, despite the clinical needs, inter-modal/contrast landmark detection has very rarely been attempted. Therefore, we propose a novel contrastive learning framework to detect corresponding landmarks between MRI and intra-operative US scans in neurosurgery. Specifically, two convolutional neural networks were trained jointly to encode image features in MRI and US scans to help match the US image patch that contain the corresponding landmarks in the MRI. We developed and validated the technique using the public RESECT database. With a mean landmark detection accuracy of 5.88±4.79 mm against 18.78±4.77 mm with SIFT features, the proposed method offers promising results for MRI-US landmark detection in neurosurgical applications for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)

    Article  Google Scholar 

  2. Dolecek, T.A., Propp, J.M., Stroup, N.E., Kruchko, C.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2005–2009. Neuro-oncology 14(suppl_5), v1–v49 (2012)

    Google Scholar 

  3. Xiao, Y., et al.: Evaluation of MRI to ultrasound registration methods for brain shift correction: the CuRIOUS2018 challenge. IEEE Trans. Med. Imaging 39(3), 777–786 (2019)

    Article  Google Scholar 

  4. Yao, Q., Xiao, L., Liu, P., Zhou, S.K.: Label-free segmentation of COVID-19 lesions in lung CT. IEEE Trans. Med. Imaging 40(10), 2808–2819 (2021)

    Article  Google Scholar 

  5. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_27

    Chapter  Google Scholar 

  6. Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: You only learn once: universal anatomical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 85–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_9

    Chapter  Google Scholar 

  7. Tripathi, A., et al.: Unsupervised landmark detection and classification of lung infection using transporter neural networks. Comput. Biol. Med. 152, 106345 (2023)

    Article  Google Scholar 

  8. Toews, M., Wells, W.M., III.: Efficient and robust model-to-image alignment using 3d scale-invariant features. Med. Image Anal. 17(3), 271–282 (2013)

    Article  Google Scholar 

  9. Salari, S., Rasoulian, A., Battie, M., Fortin, M., Rivaz, H., Xiao, Y.: Uncertainty-aware transformer model for anatomical landmark detection in paraspinal muscle MRIs. In: Medical Imaging,: Image Processing, vol. 12464, pp. 238–244. SPIE (2023)

    Google Scholar 

  10. Xiao, Y., Fortin, M., Unsgård, G., Rivaz, H., Reinertsen, I.: Re trospective evaluation of cerebral tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries. Med. Phys. 44(7), 3875–3882 (2017)

    Article  Google Scholar 

  11. Rister, B., Horowitz, M.A., Rubin, D.L.: Volumetric image registration from invariant keypoints. IEEE Trans. Image Process. 26(10), 4900–4910 (2017)

    Article  MathSciNet  Google Scholar 

  12. You, K., Lee, S., Jo, K., Park, E., Kooi, T., Nam, H.: Intra-class contrastive learning improves computer aided diagnosis of breast cancer in mammography. In: Medical Image Computing and Computer Assisted Intervention-MICCAI: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part III, pp. 55–64. Springer (2022). https://doi.org/10.1007/978-3-031-16437-8_6

  13. Cheng, L.-H., Sun, X., van der Geest, R.J.: Contrastive learning for echocardiographic view integration. In: Medical Image Computing and Computer Assisted Intervention-MICCAI,: 25th International Conference, Singapore, v September 2022, Proceedings, Part IV, pp. 340–349. Springer (2022). https://doi.org/10.1007/978-3-031-16440-8_33

  14. Bhattacharya, D., et al.: Supervised contrastive learning to classify paranasal anomalies in the maxillary sinus. In: Medical Image Computing and Computer Assisted Intervention-MICCAI, et al.: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part III, pp. 429–438. Springer (2022). https://doi.org/10.1007/978-3-031-16437-8_41

  15. Emre, T., Chakravarty, A., Rivail, A., Riedl, S., Schmidt-Erfurth, U., Bogunović, H.: Tinc: temporally informed non-contrastive learning for disease progression modeling in retinal OCT volumes. In: Medical Image Computing and Computer Assisted Intervention-MICCAI,: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part II, pp. 625–634. Springer (2022). https://doi.org/10.1007/978-3-031-16434-7_60

  16. Liu, T., Liu, W., Yu, L., Wan, L., Han, T., Zhu, L.: Joint prediction of meningioma grade and brain invasion via task-aware contrastive learning. In: Medical Image Computing and Computer Assisted Intervention-MICCAI,: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part III, pp. 355–365. Springer (2022). https://doi.org/10.1007/978-3-031-16437-8_34

  17. Pan, Y., Gernand, A.D., Goldstein, J.A., Mithal, L., Mwinyelle, D., Wang, J.Z.: Vision-language contrastive learning approach to robust automatic placenta analysis using photographic images. In: Medical Image Computing and Computer Assisted Intervention-MICCAI: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part III, pp. 707–716. Springer (2022). https://doi.org/10.1007/978-3-031-16437-8_68

  18. Hang, W., Huang, Y., Liang, S., Lei, B., Choi, K.-S., Qin, J.: Reliability-aware contrastive self-ensembling for semi-supervised medical image classification. In: Medical Image Computing and Computer Assisted Intervention-MICCAI,: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part I, pp. 754–763. Springer (2022). https://doi.org/10.1007/978-3-031-16431-6_71

  19. Quan, Q., Yao, Q., Li, J., Zhou, S.K.: Which images to label for few-shot medical landmark detection?. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20606–20616 (2022)

    Google Scholar 

  20. Quan, Q., Yao, Q., Li, J., et al.: Information-guided pixel augmentation for pixel-wise contrastive learning, arXiv preprint arXiv:2211.07118 (2022)

  21. Yao, Q., Quan, Q., Xiao, L., Kevin Zhou, S.: One-shot medical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 177–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_17

    Chapter  Google Scholar 

  22. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, pp. 297–304 (2010)

    Google Scholar 

  23. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding, arXiv preprint arXiv:1807.03748 (2018)

  24. Hering, A., et al.: Learn2reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  25. Pirhadi, A., Salari, S., Ahmad, M.O., Rivaz, H., Xiao, Y.: Robust landmark-based brain shift correction with a Siamese neural network in ultrasound-guided brain tumor resection. Inter. J. Comput. Assisted Radiol. Surgery, 1–8 (2022)

    Google Scholar 

  26. Luo, J., et al.: A feature-driven active framework for ultrasound-based brain shift compensation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 30–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_4

    Chapter  Google Scholar 

  27. Canalini, L., Klein, J., Miller, D., Kikinis, R.: Segmentation-based registration of ultrasound volumes for glioma resection in image-guided neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 14, 1697–1713 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de Recherche du Québec Nature et technologies (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soorena Salari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salari, S., Rasoulian, A., Rivaz, H., Xiao, Y. (2023). Towards Multi-modal Anatomical Landmark Detection for Ultrasound-Guided Brain Tumor Resection with Contrastive Learning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics