Skip to main content

Dose Guidance for Radiotherapy-Oriented Deep Learning Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Deep learning-based image segmentation for radiotherapy is intended to speed up the planning process and yield consistent results. However, most of these segmentation methods solely rely on distribution and geometry-associated training objectives without considering tumor control and the sparing of healthy tissues. To incorporate dosimetric effects into segmentation models, we propose a new training loss function that extends current state-of-the-art segmentation model training via a dose-based guidance method. We hypothesized that adding such a dose-guidance mechanism improves the robustness of the segmentation with respect to the dose (i.e., resolves distant outliers and focuses on locations of high dose/dose gradient). We demonstrate the effectiveness of the proposed method on Gross Tumor Volume segmentation for glioblastoma treatment. The obtained dosimetry-based results show reduced dose errors relative to the ground truth dose map using the proposed dosimetry-segmentation guidance, outperforming state-of-the-art distribution and geometry-based segmentation losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code available under https://github.com/ruefene/doselo.

References

  1. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  2. Cloak, K., et al.: Contour variation is a primary source of error when delivering post prostatectomy radiotherapy: results of the trans-tasman radiation oncology group 08.03 radiotherapy adjuvant versus early salvage (raves) benchmarking exercise. J. Med. Imag. Radiat. Oncol. 63(3), 390–398 (2019)

    Google Scholar 

  3. Dayani, F., et al.: Safety and outcomes of resection of butterfly glioblastoma. Neurosurg. Focus 44(6), E4 (2018)

    Article  Google Scholar 

  4. Fidon, L., et al.: A dempster-shafer approach to trustworthy AI with application to fetal brain MRI segmentation. arXiv preprint arXiv:2204.02779 (2022)

  5. Galdran, A., Carneiro, G., Ballester, M.A.G.: On the optimal combination of cross-entropy and soft dice losses for lesion segmentation with out-of-distribution robustness. In: Yap, M.H., Kendrick, C., Cassidy, B. (eds.) Diabetic Foot Ulcers Grand Challenge. DFUC 2022. LNCS, vol. 13797. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26354-5_4

  6. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    Article  MathSciNet  Google Scholar 

  7. Guo, C., Huang, P., Li, Y., Dai, J.: Accurate method for evaluating the duration of the entire radiotherapy process. J. Appl. Clin. Med. Phys. 21(9), 252–258 (2020)

    Article  Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Kamath, A., Poel, R., Willmann, J., Andratschke, N., Reyes, M.: How sensitive are deep learning based radiotherapy dose prediction models to variability in organs at risk segmentation? In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2023)

    Google Scholar 

  10. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Kofler, F., et al.: Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the dice coefficient. arXiv preprint arXiv:2103.06205 (2021)

  12. Liu, S., Zhang, J., Li, T., Yan, H., Liu, J.: A cascade 3D U-Net for dose prediction in radiotherapy. Med. Phys. 48(9), 5574–5582 (2021)

    Article  Google Scholar 

  13. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  14. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020). https://doi.org/10.1109/TMI.2020.3006437

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  16. Niyazi, M., et al.: ESTRO-ACROP guideline “target delineation of glioblastomas.” Radiotherapy Oncol. 118(1), 35–42 (2016)

    Google Scholar 

  17. Poel, R., et al.: Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma. Radiat. Oncol. 17(1), 170 (2022)

    Article  Google Scholar 

  18. Poel, R., et al.: The predictive value of segmentation metrics on dosimetry in organs at risk of the brain. Med. Image Anal. 73, 102161 (2021)

    Article  Google Scholar 

  19. Reinke, A., et al.: Common limitations of performance metrics in biomedical image analysis. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Scoccianti, S., et al.: Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother. Oncol. 114(2), 230–238 (2015)

    Article  Google Scholar 

  22. Vaassen, F., et al.: Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy. Phys. Imag. Radiat. Oncol. 13, 1–6 (2020)

    Article  Google Scholar 

  23. Vandewinckele, L., et al.: Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance. Radiother. Oncol. 153, 55–66 (2020)

    Article  Google Scholar 

  24. Vinod, S.K., Jameson, M.G., Min, M., Holloway, L.C.: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiother. Oncol. 121(2), 169–179 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Rüfenacht .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3819 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rüfenacht, E. et al. (2023). Dose Guidance for Radiotherapy-Oriented Deep Learning Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics