Skip to main content

LABRAD-OR: Lightweight Memory Scene Graphs for Accurate Bimodal Reasoning in Dynamic Operating Rooms

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14228))

Abstract

Modern surgeries are performed in complex and dynamic settings, including ever-changing interactions between medical staff, patients, and equipment. The holistic modeling of the operating room (OR) is, therefore, a challenging but essential task, with the potential to optimize the performance of surgical teams and aid in developing new surgical technologies to improve patient outcomes. The holistic representation of surgical scenes as semantic scene graphs (SGG), where entities are represented as nodes and relations between them as edges, is a promising direction for fine-grained semantic OR understanding. We propose, for the first time, the use of temporal information for more accurate and consistent holistic OR modeling. Specifically, we introduce memory scene graphs, where the scene graphs of previous time steps act as the temporal representation guiding the current prediction. We design an end-to-end architecture that intelligently fuses the temporal information of our lightweight memory scene graphs with the visual information from point clouds and images. We evaluate our method on the 4D-OR dataset and demonstrate that integrating temporality leads to more accurate and consistent results achieving an +5% increase and a new SOTA of 0.88 in macro F1. This work opens the path for representing the entire surgery history with memory scene graphs and improves the holistic understanding in the OR. Introducing scene graphs as memory representations can offer a valuable tool for many temporal understanding tasks. We will publish our code upon acceptance. The code is publicly available at https://github.com/egeozsoy/LABRAD-OR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., Yang, M.Y.: Spatial-temporal transformer for dynamic scene graph generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16372–16382 (2021)

    Google Scholar 

  2. Czempiel, T., et al.: TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 343–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_33

    Chapter  Google Scholar 

  3. Czempiel, T., Sharghi, A., Paschali, M., Navab, N., Mohareri, O.: Surgical workflow recognition: from analysis of challenges to architectural study. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision-ECCV 2022. LNCS, vol. 13803, pp. 556–568. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_32

    Chapter  Google Scholar 

  4. Ding, H., Zhang, J., Kazanzides, P., Wu, J.Y., Unberath, M.: Carts: causality-driven robot tool segmentation from vision and kinematics data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. LNCS, vol. 13437, pp. 387–398. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_37

    Chapter  Google Scholar 

  5. Gao, X., Jin, Y., Long, Y., Dou, Q., Heng, P.-A.: Trans-SVNet: accurate phase recognition from surgical videos via hybrid embedding aggregation transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 593–603. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_57

    Chapter  Google Scholar 

  6. Jamal, M.A., Mohareri, O.: Multi-modal unsupervised pre-training for surgical operating room workflow analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. LNCS, vol. 13437, pp. 453–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_43

    Chapter  Google Scholar 

  7. Jha, D., et al.: Kvasir-instrument: diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 218–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_19

    Chapter  Google Scholar 

  8. Ji, J., Krishna, R., Fei-Fei, L., Niebles, J.C.: Action genome: actions as compositions of spatio-temporal scene graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10236–10247 (2020)

    Google Scholar 

  9. Jin, Y., et al.: Multi-task recurrent convolutional network with correlation loss for surgical video analysis. Med. Image Anal. 59, 101572 (2020)

    Article  Google Scholar 

  10. Kennedy-Metz, L.R., et al.: Computer vision in the operating room: opportunities and caveats. IEEE Trans. Med. Robot. Bionics 3, 2–10 (2020). https://doi.org/10.1109/TMRB.2020.3040002

    Article  Google Scholar 

  11. Lalys, F., Jannin, P.: Surgical process modelling: a review. Int. J. Comput. Assist. Radiol. Surg. 9, 495–511 (2014)

    Article  Google Scholar 

  12. Maier-Hein, L., et al.: Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1(9), 691–696 (2017)

    Article  Google Scholar 

  13. Mottaghi, A., Sharghi, A., Yeung, S., Mohareri, O.: Adaptation of surgical activity recognition models across operating rooms. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. LNCS, vol. 13437, pp. 530–540. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_51

    Chapter  Google Scholar 

  14. Nwoye, C.I., et al.: Recognition of instrument-tissue interactions in endoscopic videos via action triplets. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 364–374. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_35

    Chapter  Google Scholar 

  15. Nwoye, C.I., et al.: Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Med. Image Anal. 78, 102433 (2022)

    Article  Google Scholar 

  16. Özsoy, E., Örnek, E.P., Eck, U., Czempiel, T., Tombari, F., Navab, N.: 4D-or: semantic scene graphs for or domain modeling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI. LNCS, vol. 13437, pp. 475–485. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_45

    Chapter  Google Scholar 

  17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Sharghi, A., Haugerud, H., Oh, D., Mohareri, O.: Automatic operating room surgical activity recognition for robot-assisted surgery. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 385–395. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_37

    Chapter  Google Scholar 

  19. Sharma, S., Nwoye, C.I., Mutter, D., Padoy, N.: Rendezvous in time: an attention-based temporal fusion approach for surgical triplet recognition. arXiv preprint arXiv:2211.16963 (2022)

  20. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  21. Teng, Y., Wang, L., Li, Z., Wu, G.: Target adaptive context aggregation for video scene graph generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13688–13697 (2021)

    Google Scholar 

  22. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Wald, J., Dhamo, H., Navab, N., Tombari, F.: Learning 3D semantic scene graphs from 3D indoor reconstructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3961–3970 (2020)

    Google Scholar 

  25. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  26. Ying, C., et al.: Do transformers really perform badly for graph representation? In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Stryker. The authors would like to thank Carl Zeiss AG for their support of Felix Holm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ege Özsoy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8277 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Özsoy, E., Czempiel, T., Holm, F., Pellegrini, C., Navab, N. (2023). LABRAD-OR: Lightweight Memory Scene Graphs for Accurate Bimodal Reasoning in Dynamic Operating Rooms. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics