Skip to main content

Learning Expected Appearances for Intraoperative Registration During Neurosurgery

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical microscope for a predicted range of transformations. Our method estimates the camera pose by minimizing the dissimilarity between the intraoperative 2D view through the optical microscope and the synthesized expected texture. In contrast to conventional methods, our approach transfers the processing tasks to the preoperative stage, reducing thereby the impact of low-resolution, distorted, and noisy intraoperative images, that often degrade the registration accuracy. We applied our method in the context of neuronavigation during brain surgery. We evaluated our approach on synthetic data and on retrospective data from 6 clinical cases. Our method outperformed state-of-the-art methods and achieved accuracies that met current clinical standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulyanov, D., et al.: Texture networks: feed-forward synthesis of textures and stylized images. In: Proceedings of Machine Learning Research, vol. 48, pp. 1349–1357. PMLR (2016)

    Google Scholar 

  2. Maier-Hein, L., et al.: Surgical data science - from concepts toward clinical translation. Med. Image Anal. 76, 102–306 (2022)

    Article  Google Scholar 

  3. Fernandez, V., et al.: Can segmentation models be trained with fully synthetically generated data? In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) SASHIMI 2022. LNCS, vol. 13570, pp. 79–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16980-9_8

    Chapter  Google Scholar 

  4. Frisken, S., et al.: A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection. Int. J. Comput. Assist. Radiol. Surg. 15, 75–85 (2019). https://doi.org/10.1007/s11548-019-02057-2

    Article  Google Scholar 

  5. González-Darder, J.M.: ‘State of the art’ of the craniotomy in the early twenty-first century and future development. In: González-Darder, J.M. (ed.) Trepanation, Trephining and Craniotomy, pp. 421–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22212-3_34

    Chapter  Google Scholar 

  6. Haouchine, N., Juvekar, P., Wells III, W.M., Cotin, S., Golby, A., Frisken, S.: Deformation aware augmented reality for craniotomy using 3D/2D non-rigid registration of cortical vessels. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 735–744. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_71

    Chapter  Google Scholar 

  7. Haouchine, N., Juvekar, P., Nercessian, M., Wells III, W.M., Golby, A., Frisken, S.: Pose estimation and non-rigid registration for augmented reality during neurosurgery. IEEE Trans. Biomed. Eng. 69(4), 1310–1317 (2022)

    Google Scholar 

  8. Ji, S., Fan, X., Roberts, D.W., Hartov, A., Paulsen, K.D.: Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration. Med. Image Anal. 18(7), 1169–1183 (2014)

    Article  Google Scholar 

  9. Ji, S., Wu, Z., Hartov, A., Roberts, D.W., Paulsen, K.D.: Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med. Phys. 35(10), 4612–4624 (2008)

    Article  Google Scholar 

  10. Jiang, J., et al.: Marker-less tracking of brain surface deformations by non-rigid registration integrating surface and vessel/sulci features. Int. J. Comput. Assist. Radiol. Surg. 11, 1687–1701 (2016). https://doi.org/10.1007/s11548-016-1358-7

    Article  Google Scholar 

  11. Kuhnt, D., Bauer, M.H.A., Nimsky, C.: Brain shift compensation and neurosurgical image fusion using intraoperative MRI: current status and future challenges. Crit. Rev. Trade Biomed. Eng. 40(3), 175–185 (2012)

    Article  Google Scholar 

  12. Lecomte, F., Dillenseger, J.L., Cotin, S.: CNN-based real-time 2D–3D deformable registration from a single X-ray projection. CoRR abs/2003.08934 (2022)

    Google Scholar 

  13. Luo, M., Larson, P.S., Martin, A.J., Konrad, P.E., Miga, M.I.: An integrated multi-physics finite element modeling framework for deep brain stimulation: preliminary study on impact of brain shift on neuronal pathways. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 682–690. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_76

    Chapter  Google Scholar 

  14. Machado, I., et al.: Non-rigid registration of 3d ultrasound for neurosurgery using automatic feature detection and matching. Int. J. Comput. Assist. Radiol. Surg. 13, 1525–1538 (2018). https://doi.org/10.1007/s11548-018-1786-7

    Article  Google Scholar 

  15. Marreiros, F.M.M., Rossitti, S., Wang, C., Smedby, Ö.: Non-rigid deformation pipeline for compensation of superficial brain shift. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 141–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_18

    Chapter  Google Scholar 

  16. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  17. Mohammadi, A., Ahmadian, A., Azar, A.D., Sheykh, A.D., Amiri, F., Alirezaie, J.: Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study. Int. J. Comput. Assist. Radiol. Surg. 10(11), 1753–1764 (2015). https://doi.org/10.1007/s11548-015-1216-z

    Article  Google Scholar 

  18. Nercessian, M., Haouchine, N., Juvekar, P., Frisken, S., Golby, A.: Deep cortical vessel segmentation driven by data augmentation with neural image analogy. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 721–724. IEEE (2021)

    Google Scholar 

  19. Pereira, V.M., et al.: Volumetric measurements of brain shift using intraoperative cone-beam computed tomography: preliminary study. Oper. Neurosurg. 12(1), 4–13 (2015)

    Article  MathSciNet  Google Scholar 

  20. Rivaz, H., Collins, D.L.: Deformable registration of preoperative MR, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1017–1028 (2015). https://doi.org/10.1007/s11548-014-1099-4

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Sanai, N., Polley, M.Y., McDermott, M.W., Parsa, A.T., Berger, M.S.: An extent of resection threshold for newly diagnosed glioblastomas: clinical article. J. Neurosurg. JNS 115(1), 3–8 (2011)

    Article  Google Scholar 

  23. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.W.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  24. Skandarani, Y., Jodoin, P.M., Lalande, A.: GANs for medical image synthesis: an empirical study. J. Imaging 9(3), 69 (2023)

    Article  Google Scholar 

  25. Stoyanov, D.: Surgical vision. Ann. Biomed. Eng. 40, 332–345 (2012). https://doi.org/10.1007/s10439-011-0441-z

    Article  Google Scholar 

  26. Sun, K., Pheiffer, T., Simpson, A., Weis, J., Thompson, R., Miga, M.: Near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE Transl. Eng. Health Med. 2, 1–13 (2014)

    Article  Google Scholar 

  27. Tian, L., Lee, Y.Z., San José Estépar, R., Niethammer, M.: LiftReg: limited angle 2D/3D deformable registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 207–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_20

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors were partially supported by the following National Institutes of Health grants: R01EB027134, R03EB032050, R01EB032387, and R01EB034223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Haouchine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haouchine, N. et al. (2023). Learning Expected Appearances for Intraoperative Registration During Neurosurgery. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics