Skip to main content

Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 2687 Accesses

Abstract

Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.

Y. Wu and X. Liu—Contributed equally to the paper.

This work was supported by the National Natural Science Foundation of China (No. 62201265, 61971214), and the Natural Science Foundation of Hubei Province of China (No. 2021CFB442). P.-T. Yap was supported in part by the United States National Institutes of Health (NIH) through grants MH125479 and EB008374.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://osqp.org/.

  2. 2.

    https://resources.drcmr.dk/MAPdata/axon-relaxation/.

  3. 3.

    https://www.mrtrix.org/.

References

  1. Anania, V., et al.: Improved diffusion parameter estimation by incorporating T2 relaxation properties into the DKI-FWE model. Neuroimage 256, 119219 (2022)

    Article  Google Scholar 

  2. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)

    Article  Google Scholar 

  3. Barakovic, M., et al.: Bundle-specific axon diameter index as a new contrast to differentiate white matter tracts. Front. Neurosci. 15, 646034 (2021)

    Article  Google Scholar 

  4. Cowan, B., Cowan, B.P.: Nuclear Magnetic Resonance and Relaxation, vol. 427. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  5. Ellingson, B.M., Wen, P.Y., Cloughesy, T.F.: Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14(2), 307–320 (2017)

    Article  Google Scholar 

  6. Gong, T., Tong, Q., He, H., Sun, Y., Zhong, J., Zhang, H.: MTE-NODDI: multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times. Neuroimage 217, 116906 (2020)

    Article  Google Scholar 

  7. Hu, L.S., Hawkins-Daarud, A., Wang, L., Li, J., Swanson, K.R.: Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett. 477, 97–106 (2020)

    Article  Google Scholar 

  8. Huynh, K.M., et al.: Probing tissue microarchitecture of the baby brain via spherical mean spectrum imaging. IEEE Trans. Med. Imaging 39(11), 3607–3618 (2020)

    Article  Google Scholar 

  9. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  10. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. Neuroimage 139, 346–359 (2016)

    Article  Google Scholar 

  11. Lampinen, B., et al.: Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. Magn. Reson. Med. 84(3), 1605–1623 (2020)

    Article  Google Scholar 

  12. Li, Y., Srinivasan, R., Ratiney, H., Lu, Y., Chang, S.M., Nelson, S.J.: Comparison of T1 and T2 metabolite relaxation times in glioma and normal brain at 3T. J. Magn. Reson. Imaging 28(2), 342–350 (2008). https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.21453

  13. McDonald, E.S., et al.: Mean apparent diffusion coefficient is a sufficient conventional diffusion-weighted MRI metric to improve breast MRI diagnostic performance: results from the ECOG-ACRIN cancer research group A6702 diffusion imaging trial. Radiology 298(1), 60 (2021)

    Article  Google Scholar 

  14. McKinnon, E.T., Jensen, J.H.: Measuring intra-axonal T\(_{\rm 2 }\) in white matter with direction-averaged diffusion MRI. Magn. Reson. Med. 81(5), 2985–2994 (2019)

    Article  Google Scholar 

  15. Morozov, S., et al.: Diffusion processes modeling in magnetic resonance imaging. Insights Imaging 11(1), 60 (2020)

    Article  Google Scholar 

  16. Ning, L., Gagoski, B., Szczepankiewicz, F., Westin, C.F., Rathi, Y.: Joint relaxation-diffusion imaging moments to probe neurite microstructure. IEEE Trans. Med. Imaging 39(3), 668–677 (2020)

    Article  Google Scholar 

  17. Ning, L., Westin, C.F., Rathi, Y.: Characterization of b-value dependent T2 relaxation rates for probing neurite microstructure. bioRxiv. Cold Spring Harbor Laboratory (2022)

    Google Scholar 

  18. Palombo, M., et al.: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835 (2020)

    Article  Google Scholar 

  19. Pizzolato, M., Andersson, M., Canales-Rodríguez, E.J., Thiran, J.P., Dyrby, T.B.: Axonal T2 estimation using the spherical variance of the strongly diffusion-weighted MRI signal. Magn. Reson. Imaging 86, 118–134 (2022)

    Article  Google Scholar 

  20. Reymbaut, A.: Diffusion anisotropy and tensor-valued encoding. In: Topgaard, D. (ed.) New Developments in NMR, pp. 68–102. Royal Society of Chemistry, Cambridge (2020)

    Google Scholar 

  21. Slator, P.J., et al.: Combined diffusion-relaxometry microstructure imaging: Current status and future prospects. Magn. Reson. Med. 86(6), 2987–3011 (2021)

    Article  Google Scholar 

  22. Sotardi, S., et al.: Voxelwise and regional brain apparent diffusion coefficient changes on MRI from birth to 6 years of age. Radiology 298(2), 415 (2021)

    Article  Google Scholar 

  23. Tavakoli, M.B., Khorasani, A., Jalilian, M.: Improvement grading brain glioma using T2 relaxation times and susceptibility-weighted images in MRI. Inform. Med. Unlocked 37, 101201 (2023)

    Article  Google Scholar 

  24. Upadhyay, N., Waldman, A.: Conventional MRI evaluation of gliomas. Br. J. Radiol. 84(2), S107–S111 (2011)

    Google Scholar 

  25. Veraart, J., Novikov, D.S., Fieremans, E.: TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T2 relaxation times. Neuroimage 182, 360–369 (2018)

    Article  Google Scholar 

  26. Veraart, J., et al.: Noninvasive quantification of axon radii using diffusion MRI. eLife 9, e49855 (2020)

    Google Scholar 

  27. Weisskoff, R., Zuo, C.S., Boxerman, J.L., Rosen, B.R.: Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn. Reson. Med. 31(6), 601–610 (1994)

    Article  Google Scholar 

  28. White, N.S., Leergaard, T.B., D’Arceuil, H., Bjaalie, J.G., Dale, A.M.: Probing tissue microstructure with restriction spectrum imaging: histological and theoretical validation. Hum. Brain Mapp. 34(2), 327–346 (2013)

    Article  Google Scholar 

  29. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Wu or Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Liu, X., Zhang, X., Huynh, K.M., Ahmad, S., Yap, PT. (2023). Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics