Skip to main content

WarpEM: Dynamic Time Warping for Accurate Catheter Registration in EM-Guided Procedures

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2997 Accesses

Abstract

Accurate catheter tracking is crucial during Minimally Invasive Endovascular Procedures (MIEP), and Electromagnetic (EM) tracking is a widely used technology that serves this purpose. However, registration between preoperative images and the EM tracking system is often challenging. Existing registration methods typically require manual interactions, which can be time-consuming, increase the risk of errors and change the procedural workflow. Although several registration methods are available for catheter tracking, such as marker-based and path-based approaches, their limitations can impact the accuracy of the resulting tracking solution, consequently, the outcome of the medical procedure.

This paper introduces a novel automated catheter registration method for EM-guided MIEP. The method utilizes 3D signal temporal analysis, such as Dynamic Time Warping (DTW) algorithms, to improve registration accuracy and reliability compared to existing methods. DTW can accurately warp and match EM-tracked paths to the vessel’s centerline, making it particularly suitable for registration. The introduced registration method is evaluated for accuracy in a vascular phantom using a marker-based registration as the ground truth. The results indicate that the DTW method yields accurate and reliable registration outcomes, with a mean error of 2.22 mm. The introduced registration method presents several advantages over state-of-the-art methods, such as high registration accuracy, no initialization required, and increased automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller, M.: Dynamic time warping. In: Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3_4

  2. Abi-Jaoudeh, N., et al.: Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc. Intervent. Radiol. 35(5), 986–998 (2012). https://doi.org/10.1007/s00270-012-0446-5

    Article  Google Scholar 

  3. Efrat, A., Fan, Q., Venkatasubramanian, S.: Curve matching, time warping, and light fields: new algorithms for computing similarity between curves. J. Math. Imaging Vis. 27(3), 203–216 (2007). https://doi.org/10.1007/s10851-006-0647-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Franz, A.M., Haidegger, T., Birkfellner, W., Cleary, K., Peters, T.M., Maier-Hein, L.: Electromagnetic tracking in medicine-a review of technology, validation, and applications. IEEE Trans. Med. Imaging 33(8), 1702–1725 (2014). https://doi.org/10.1109/TMI.2014.2321777

    Article  Google Scholar 

  5. de Lambert, A., Esneault, S., Lucas, A., Haigron, P., Cinquin, P., Magne, J.L.: Electromagnetic tracking for registration and navigation in endovascular aneurysm repair: a phantom study. Eur. J. Vasc. Endovasc. Surg. 43(6), 684–689 (2012). https://doi.org/10.1016/j.ejvs.2012.03.007

    Article  Google Scholar 

  6. Liao, R., Zhang, L., Sun, Y., Miao, S., Chefd’Hotel, C.: A review of recent advances in registration techniques applied to minimally invasive therapy. IEEE Trans. Multimed. 15(5), 983–1000 (2013). https://doi.org/10.1109/TMM.2013.2244869

  7. Lin, Q., Yang, R., Dai, Z., Chen, H., Cai, K.: Automatic registration method using EM sensors in the IoT operating room. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–16 (2020). https://doi.org/10.1186/s13638-020-01754-w

    Article  Google Scholar 

  8. Luo, X.: A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and ct volume without markers: a bronchoscopic navigation system. Med. Phys. 41(6 - Part1), 061913 (2014). https://doi.org/10.1118/1.4876381

  9. Manstad-Hulaas, F., Tangen, G.A., Gruionu, L.G., Aadahl, P., Hernes, T.A.N.: Three-dimensional endovascular navigation with electromagnetic tracking: ex vivo and in vivo accuracy. J. Endovasc. Ther. 18(2), 230–240 (2011). https://doi.org/10.1583/10-3301.1

    Article  Google Scholar 

  10. Matl, S., Brosig, R., Baust, M., Navab, N., Demirci, S.: Vascular image registration techniques: a living review. Med. Image Anal. 35, 1–17 (2017). https://doi.org/10.1016/j.media.2016.05.005

    Article  Google Scholar 

  11. Mittmann, B.J., et al.: Reattachable fiducial skin marker for automatic multimodality registration. Int. J. Comput. Assist. Radiol. Surg. 17(11), 2141–2150 (2022). https://doi.org/10.1007/s11548-022-02639-7

    Article  Google Scholar 

  12. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46

    Article  Google Scholar 

  13. Nypan, E., Tangen, G.A., Manstad-Hulaas, F., Brekken, R.: Vessel-based rigid registration for endovascular therapy of the abdominal aorta. Minim. Invasive Ther. Allied Technol. 28(2), 127–133 (2019). https://doi.org/10.1080/13645706.2019.1575240

    Article  Google Scholar 

  14. Paliwal, K., Agarwal, A., Sinha, S.S.: A modification over Sakoe and Chiba’s dynamic time warping algorithm for isolated word recognition. Signal Process. 4(4), 329–333 (1982). https://doi.org/10.1016/0165-1684(82)90009-3

    Article  Google Scholar 

  15. Ramadani, A., Bui, M., Wendler, T., Schunkert, H., Ewert, P., Navab, N.: A survey of catheter tracking concepts and methodologies. Med. Image Anal. 82, 102584 (2022). https://doi.org/10.1016/j.media.2022.102584

    Article  Google Scholar 

  16. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055

    Article  MATH  Google Scholar 

  17. Sielhorst, T., Blum, T., Navab, N.: Synchronizing 3D movements for quantitative comparison and simultaneous visualization of actions. In: Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’05), pp. 38–47, October 2005. https://doi.org/10.1109/ISMAR.2005.57

  18. Sutton, E.E., Fuerst, B., Ghotbi, R., Cowan, N.J., Navab, N.: Biologically inspired catheter for endovascular sensing and navigation. Sci. Rep. 10(1), 5643 (2020). https://doi.org/10.1038/s41598-020-62360-w

    Article  Google Scholar 

  19. Wood, B.J., et al.: Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J. Vasc. Interv. Radiol. 16(4), 493–505 (2005). https://doi.org/10.1097/01.RVI.0000148827.62296.B4

    Article  Google Scholar 

  20. Zhang, H., et al.: Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput. Aided Surg. 11(3), 127–136 (2006). https://doi.org/10.3109/10929080600751399

    Article  Google Scholar 

  21. Zhang, Z., Liu, Z., Singapogu, R.: Extracting subtask-specific metrics toward objective assessment of needle insertion skill for hemodialysis cannulation. J. Med. Robot. Res. 04(03n04), 1942006 (2019). https://doi.org/10.1142/S2424905X19420066

Download references

Acknowledgment

The project was funded by the Bavarian State Ministry of Science and Arts within the framework of the “Digitaler Herz-OP” project under grant number 1530/891 02. We also thank ImFusion GmbH and BrainLab AG for their software support and valuable interactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardit Ramadani .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 74940 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramadani, A., Ewert, P., Schunkert, H., Navab, N. (2023). WarpEM: Dynamic Time Warping for Accurate Catheter Registration in EM-Guided Procedures. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics