Skip to main content

Shape-Based Pose Estimation for Automatic Standard Views of the Knee

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Surgical treatment of complicated knee fractures is guided by real-time imaging using a mobile C-arm. Immediate and continuous control is achieved via 2D anatomy-specific standard views that correspond to a specific C-arm pose relative to the patient positioning, which is currently determined manually, following a trial-and-error approach at the cost of time and radiation dose. The characteristics of the standard views of the knee suggests that the shape information of individual bones could guide an automatic positioning procedure, reducing time and the amount of unnecessary radiation during C-arm positioning. To fully automate the C-arm positioning task during knee surgeries, we propose a complete framework that enables (1) automatic laterality and standard view classification and (2) automatic shape-based pose regression toward the desired standard view based on a single initial X-ray. A suitable shape representation is proposed to incorporate semantic information into the pose regression pipeline. The pipeline is designed to handle two distinct standard views with one architecture. Experiments were conducted to assess the performance of the proposed system on 3528 synthetic and 1386 real X-rays for the a.-p. and lateral standard. The view/laterality classificator resulted in an accuracy of 100%/98% on the simulated and 99%/98% on the real X-rays. The pose regression performance was \(d\theta _{a.-p}=5.8\pm 3.3^\circ ,\,d\theta _{lateral}=3.7\pm 2.0^\circ \) on the simulated data and \(d\theta _{a.-p}=7.4\pm 5.0^\circ ,\,d\theta _{lateral}=8.4\pm 5.4^\circ \) on the real data outperforming intensity-based pose regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binder, N., Bodensteiner, C., Matthäus, L., Burgkart, R., Schweikard, A.: Image guided positioning for an interactive c-arm fluoroscope. Comput. Assist. Radiol. Surg., 5–7 (2006)

    Google Scholar 

  2. Bott, O.J., Dresing, K., Wagner, M., Raab, B.W., Teistler, M.: Use of a C-arm fluoroscopy simulator to support training in intraoperative radiography. Radiographics 31(3), E31–E41 (2011)

    Article  Google Scholar 

  3. Cockshott, W.P., Racoveanu, N., Burrows, D., Ferrier, M.: Use of radiographic projections of knee. Skeletal Radiol. 13(2), 131–133 (1985)

    Article  Google Scholar 

  4. De Silva, et al.: C-arm positioning using virtual fluoroscopy for image-guided surgery. In: Medical Imaging: Image-guided Procedures, Robotic Interventions, and Modeling, vol. 10135, p. 101352K. International Society for Optics and Photonics (2017)

    Google Scholar 

  5. Fallavollita, P., et al.: Desired-View controlled positioning of angiographic C-arms. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 659–666. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_82

    Chapter  Google Scholar 

  6. Fotouhi, J., et al.: Interactive flying frustums (IFFs): spatially aware surgical data visualization. Int. J. Comput. Assist. Radiol. Surg. 14(6), 913–922 (2019). https://doi.org/10.1007/s11548-019-01943-z

    Article  Google Scholar 

  7. Gong, R.H., Jenkins, B., Sze, R.W., Yaniv, Z.: A cost effective and high fidelity fluoroscopy simulator using the image-guided surgery toolkit (IGSTK). In: Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9036, p. 903618. International Society for Optics and Photonics (2014). https://doi.org/10.1117/12.2044112

  8. Haiderbhai, M., Turrubiates, J.G., Gutta, V., Fallavollita, P.: Automatic C-arm positioning using multi-functional user interface. In: Canadian Medical and Biological Engineering Society Proceedings, vol. 42 (2019)

    Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  10. Kausch, L., et al.: C-arm positioning for spinal standard projections in different intra-operative setting. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 352–362 (2021). https://doi.org/10.1007/978-3-030-87202-1_34

  11. Kausch, L., et al.: Toward automatic C-arm positioning for standard projections in orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1095–1105 (2020). https://doi.org/10.1007/s11548-020-02204-0

    Article  Google Scholar 

  12. Klein, A., Wasserthal, J., Greiner, M., Zimmerer, D., Maier-Hein, K.H.: basic_unet_example (v2019.01) (2019). https://doi.org/10.5281/zenodo.2552439

  13. Krönke, S., et al.: CNN-based pose estimation for assessing quality of ankle-joint X-ray images. In: Medical Imaging 2022: Image Processing, vol. 12032, pp. 344–352. SPIE (2022)

    Google Scholar 

  14. Mairhöfer, D., et al.: An AI-based framework for diagnostic quality assessment of ankle radiographs. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  15. Mandelka, E., et al.: Intraoperative adjustment of radiographic standard projections of the spine: interrater-and intrarater variance and consequences of ‘fluoro-hunting’considering time and radiation exposure-a cadaveric study. medRxiv (2022)

    Google Scholar 

  16. Matthews, F., et al.: Navigating the fluoroscope’s C-arm back into position: an accurate and practicable solution to cut radiation and optimize intraoperative workflow. J. Orthopaedic Trauma 21(10), 687–692 (2007). https://doi.org/10.1097/BOT.0b013e318158fd42

    Article  Google Scholar 

  17. Miao, S., et al.: Dilated FCN for multi-agent 2D/3D medical image registration. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Norris, B.L., Hahn, D.H., Bosse, M.J., Kellam, J.F., Sims, S.H.: Intraoperative fluoroscopy to evaluate fracture reduction and hardware placement during acetabular surgery. J. Orthopaedic Trauma 13(6), 414–417 (1999). https://doi.org/10.1097/00005131-199908000-00004

    Article  Google Scholar 

  19. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  20. Unberath, M., et al.: Augmented reality-based feedback for technician-in-the-loop C-arm repositioning. Healthc. Technol. Lett. 5(5), 143–147 (2018). https://doi.org/10.1049/htl.2018.5066

    Article  Google Scholar 

  21. Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12

    Chapter  Google Scholar 

  22. Wolf, I., et al.: The medical imaging interaction toolkit. Med. Image Anal. 9(6), 594–604 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Kausch .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 29912 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kausch, L., Thomas, S., Kunze, H., El Barbari, J.S., Maier-Hein, K.H. (2023). Shape-Based Pose Estimation for Automatic Standard Views of the Knee. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics