Skip to main content

Scribble-Based 3D Multiple Abdominal Organ Segmentation via Triple-Branch Multi-Dilated Network with Pixel- and Class-Wise Consistency

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2908 Accesses

Abstract

Multi-organ segmentation in abdominal Computed Tomography (CT) images is of great importance for diagnosis of abdominal lesions and subsequent treatment planning. Though deep learning based methods have attained high performance, they rely heavily on large-scale pixel-level annotations that are time-consuming and labor-intensive to obtain. Due to its low dependency on annotation, weakly supervised segmentation has attracted great attention. However, there is still a large performance gap between current weakly-supervised methods and fully supervised learning, leaving room for exploration. In this work, we propose a novel 3D framework with two consistency constraints for scribble-supervised multiple abdominal organ segmentation from CT. Specifically, we employ a Triple-branch multi-Dilated network (TDNet) with one encoder and three decoders using different dilation rates to capture features from different receptive fields that are complementary to each other to generate high-quality soft pseudo labels. For more stable unsupervised learning, we use voxel-wise uncertainty to rectify the soft pseudo labels and then supervise the outputs of each decoder. To further regularize the network, class relationship information is exploited by encouraging the generated class affinity matrices to be consistent across different decoders under multi-view projection. Experiments on the public WORD dataset show that our method outperforms five existing scribble-supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Q., Hong, Y.: Scribble2D5: weakly-supervised volumetric image segmentation via scribble annotations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 234–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_23

    Chapter  Google Scholar 

  2. Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  5. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)

    Google Scholar 

  6. En, Q., Guo, Y.: Annotation by clicks: a point-supervised contrastive variance method for medical semantic segmentation. arXiv preprint arXiv:2212.08774 (2022)

  7. Gao, F., et al.: Segmentation only uses sparse annotations: unified weakly and semi-supervised learning in medical images. Med. Image Anal. 80, 102515 (2022)

    Article  Google Scholar 

  8. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS, pp. 1–17 (2004)

    Google Scholar 

  9. Javanmardi, M., Sajjadi, M., Liu, T., Tasdizen, T.: Unsupervised total variation loss for semi-supervised deep learning of semantic segmentation. arXiv preprint arXiv:1605.01368 (2016)

  10. Kim, B., Ye, J.C.: Mumford-shah loss functional for image segmentation with deep learning. IEEE Trans. Image Process. 29, 1856–1866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liang, Z., Wang, T., Zhang, X., Sun, J., Shen, J.: Tree energy loss: towards sparsely annotated semantic segmentation. In: CVPR, pp. 16907–16916 (2022)

    Google Scholar 

  12. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR, pp. 3159–3167 (2016)

    Google Scholar 

  13. Liu, X., et al.: Weakly supervised segmentation of COVID19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  14. Luo, X.: WSL4MIS (2021). https://github.com/Luoxd1996/WSL4MIS

  15. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 528–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_50

    Chapter  Google Scholar 

  16. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  17. Luo, X., et al.: WORD: a large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image. Med. Image Anal. 82, 102642 (2022)

    Article  Google Scholar 

  18. Obukhov, A., Georgoulis, S., Dai, D., Van Gool, L.: Gated CRF loss for weakly supervised semantic image segmentation. arXiv preprint arXiv:1906.04651 (2019)

  19. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  20. Ru, L., Zhan, Y., Yu, B., Du, B.: Learning affinity from attention: end-to-end weakly-supervised semantic segmentation with transformers. In: CVPR, pp. 16846–16855 (2022)

    Google Scholar 

  21. Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised CNN segmentation. In: CVPR, pp. 1818–1827 (2018)

    Google Scholar 

  22. Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised CNN segmentation. In: ECCV, pp. 507–522 (2018)

    Google Scholar 

  23. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: ICCV, pp. 1365–1374 (2019)

    Google Scholar 

  24. Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 55, 88–102 (2019)

    Article  Google Scholar 

  25. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: CVPR, pp. 7268–7277 (2018)

    Google Scholar 

  26. Zhang, K., Zhuang, X.: Cyclemix: a holistic strategy for medical image segmentation from scribble supervision. In: CVPR, pp. 11656–11665 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62271115), Science and Technology Department of Sichuan Province, China (2022YFSY0055) and Radiation Oncology Key Laboratory of Sichuan Province Open Fund (2022ROKF04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, M., Luo, X., Liao, W., Zhang, S., Zhang, S., Wang, G. (2023). Scribble-Based 3D Multiple Abdominal Organ Segmentation via Triple-Branch Multi-Dilated Network with Pixel- and Class-Wise Consistency. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics