Skip to main content

TabAttention: Learning Attention Conditionally on Tabular Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Medical data analysis often combines both imaging and tabular data processing using machine learning algorithms. While previous studies have investigated the impact of attention mechanisms on deep learning models, few have explored integrating attention modules and tabular data. In this paper, we introduce TabAttention, a novel module that enhances the performance of Convolutional Neural Networks (CNNs) with an attention mechanism that is trained conditionally on tabular data. Specifically, we extend the Convolutional Block Attention Module to 3D by adding a Temporal Attention Module that uses multi-head self-attention to learn attention maps. Furthermore, we enhance all attention modules by integrating tabular data embeddings. Our approach is demonstrated on the fetal birth weight (FBW) estimation task, using 92 fetal abdominal ultrasound video scans and fetal biometry measurements. Our results indicate that TabAttention outperforms clinicians and existing methods that rely on tabular and/or imaging data for FBW prediction. This novel approach has the potential to improve computer-aided diagnosis in various clinical workflows where imaging and tabular data are combined. We provide a source code for integrating TabAttention in CNNs at https://github.com/SanoScience/Tab-Attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bano, S., et al.: AutoFB: automating fetal biometry estimation from standard ultrasound planes. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 228–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_22

    Chapter  Google Scholar 

  2. Benacerraf, B.R., Gelman, R., Frigoletto, F.D., Jr.: Sonographically estimated fetal weights: accuracy and limitation. Am. J. Obstet. Gynecol. 159(5), 1118–1121 (1988)

    Article  Google Scholar 

  3. Campbell, S., Wilkin, D.: Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. BJOG: Int. J. Obstet. Gynaecol. 82(9), 689–697 (1975)

    Article  Google Scholar 

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

  5. Duanmu, H., et al.: Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging, molecular and demographic data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 242–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_24

    Chapter  Google Scholar 

  6. Guan, Y., et al.: Predicting esophageal fistula risks using a multimodal self-attention network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 721–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_69

    Chapter  Google Scholar 

  7. Hadlock, F.P., Harrist, R., Sharman, R.S., Deter, R.L., Park, S.K.: Estimation of fetal weight with the use of head, body, and femur measurements-a prospective study. Am. J. Obstet. Gynecol. 151(3), 333–337 (1985)

    Article  Google Scholar 

  8. Holste, G., Partridge, S.C., Rahbar, H., Biswas, D., Lee, C.I., Alessio, A.M.: End-to-end learning of fused image and non-image features for improved breast cancer classification from MRI. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3294–3303 (2021)

    Google Scholar 

  9. Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digital Med. 3(1), 136 (2020)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  11. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 66(5), 1195–1206 (2018)

    Article  Google Scholar 

  12. Lu, Y., Zhang, X., Fu, X., Chen, F., Wong, K.K.: Ensemble machine learning for estimating fetal weight at varying gestational age. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9522–9527 (2019)

    Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Płotka, S., et al.: BabyNet: residual transformer module for birth weight prediction on fetal ultrasound video. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part IV, pp. 350–359. Springer (2022). https://doi.org/10.1007/978-3-031-16440-8_34

  15. Płotka, S., et al.: Deep learning fetal ultrasound video model match human observers in biometric measurements. Phys. Med. Biol. 67(4), 045013 (2022)

    Article  Google Scholar 

  16. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3D image and tabular data via the dynamic affine feature map transform. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 688–698. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_66

    Chapter  Google Scholar 

  17. Pressman, E.K., Bienstock, J.L., Blakemore, K.J., Martin, S.A., Callan, N.A.: Prediction of birth weight by ultrasound in the third trimester. Obstet. Gynecol. 95(4), 502–506 (2000)

    Google Scholar 

  18. Salomon, L., et al.: ISUOG practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53(6), 715–723 (2019)

    Article  Google Scholar 

  19. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. arXiv preprint arXiv:1803.02155 (2018)

  20. Sherman, D.J., Arieli, S., Tovbin, J., Siegel, G., Caspi, E., Bukovsky, I.: A comparison of clinical and ultrasonic estimation of fetal weight. Obstet. Gynecol. 91(2), 212–217 (1998)

    Article  Google Scholar 

  21. Tao, J., Yuan, Z., Sun, L., Yu, K., Zhang, Z.: Fetal birthweight prediction with measured data by a temporal machine learning method. BMC Med. Informa. Decis. Making 21(1), 1–10 (2021)

    Google Scholar 

  22. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  24. Wang, X., Liu, D., Zhang, Y., Li, Y., Wu, S.: A spatiotemporal multi-stream learning framework based on attention mechanism for automatic modulation recognition. Digit. Signal Process. 130, 103703 (2022)

    Article  Google Scholar 

  25. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  26. Yadav, S., Rai, A.: Frequency and temporal convolutional attention for text-independent speaker recognition. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6794–6798. IEEE (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement Sano No 857533 and the International Research Agendas programme of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal K. Grzeszczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grzeszczyk, M.K. et al. (2023). TabAttention: Learning Attention Conditionally on Tabular Data. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics