Skip to main content

UM-CAM: Uncertainty-weighted Multi-resolution Class Activation Maps for Weakly-supervised Fetal Brain Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2904 Accesses

Abstract

Accurate segmentation of the fetal brain from Magnetic Resonance Image (MRI) is important for prenatal assessment of fetal development. Although deep learning has shown the potential to achieve this task, it requires a large fine annotated dataset that is difficult to collect. To address this issue, weakly-supervised segmentation methods with image-level labels have gained attention, which are commonly based on class activation maps from a classification network trained with image-level labels. However, most of these methods suffer from incomplete activation regions, due to the low-resolution localization without detailed boundary cues. To this end, we propose a novel weakly-supervised method with image-level labels based on semantic features and context information exploration. We first propose an Uncertainty-weighted Multi-resolution Class Activation Map (UM-CAM) to generate high-quality pixel-level supervision. Then, we design a Geodesic distance-based Seed Expansion (GSE) method to provide context information for rectifying the ambiguous boundaries of UM-CAM. Extensive experiments on a fetal brain dataset show that our UM-CAM can provide more accurate activation regions with fewer false positive regions than existing CAM variants, and our proposed method outperforms state-of-the-art weakly-supervised segmentation methods learning from image-level labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: CVPR, pp. 4981–4990 (2018)

    Google Scholar 

  2. Araslanov, N., Roth, S.: Single-stage semantic segmentation from image labels. In: CVPR, pp. 4253–4262 (2020)

    Google Scholar 

  3. Chang, Y.T., Wang, Q., Hung, W.C., Piramuthu, R., Tsai, Y.H., Yang, M.H.: Weakly-supervised semantic segmentation via sub-category exploration. In: CVPR, pp. 8991–9000 (2020)

    Google Scholar 

  4. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: WACV, pp. 839–847 (2018)

    Google Scholar 

  5. Ebner, M.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage 206, 116324 (2020)

    Article  Google Scholar 

  6. Fan, J., Zhang, Z., Song, C., Tan, T.: Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation. In: CVPR, pp. 4283–4292 (2020)

    Google Scholar 

  7. Gao, W., et al.: TS-CAM: Token semantic coupled attention map for weakly supervised object localization. In: ICCV, pp. 2886–2895 (2021)

    Google Scholar 

  8. Han, C., et al.: Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels. Med. Image Anal. 80, 102487 (2022)

    Article  Google Scholar 

  9. Kim, B., Han, S., Kim, J.: Discriminative region suppression for weakly-supervised semantic segmentation. In: AAAI. vol. 35, pp. 1754–1761 (2021)

    Google Scholar 

  10. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In: ECCV, pp. 695–711 (2016)

    Google Scholar 

  11. Lee, S., Lee, M., Lee, J., Shim, H.: Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation. In: CVPR, pp. 5495–5505 (2021)

    Google Scholar 

  12. Li, Y., Kuang, Z., Liu, L., Chen, Y., Zhang, W.: Pseudo-mask matters in weakly-supervised semantic segmentation. In: ICCV, pp. 6964–6973 (2021)

    Google Scholar 

  13. Luo, X., et al.: MIDeepSeg: minimally interactive segmentation of unseen objects from medical images using deep learning. Med. Image Anal. 72, 102102 (2021)

    Article  Google Scholar 

  14. Makropoulos, A., Counsell, S.J., Rueckert, D.: A review on automatic fetal and neonatal brain MRI segmentation. Neuroimage 170, 231–248 (2018)

    Article  Google Scholar 

  15. Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)

    Article  Google Scholar 

  16. Qin, J., Wu, J., Xiao, X., Li, L., Wang, X.: Activation modulation and recalibration scheme for weakly supervised semantic segmentation. In: AAAI, vol. 36, pp. 2117–2125 (2022)

    Google Scholar 

  17. Ramaswamy, H.G., et al.: Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization. In: ICCV, pp. 983–991 (2020)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241 (2015)

    Google Scholar 

  19. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: ISBI, pp. 720–724 (2018)

    Google Scholar 

  20. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  21. Shen, W., et al.: A survey on label-efficient deep image segmentation: bridging the gap between weak supervision and dense prediction. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9284–9305 (2023)

    Article  Google Scholar 

  22. Shi, W., et al.: Fetal brain age estimation and anomaly detection using attention-based deep ensembles with uncertainty. Neuroimage 223, 117316 (2020)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, pp. 1–14 (2015)

    Google Scholar 

  24. Sridar, P., et al.: Automatic measurement of thalamic diameter in 2-D fetal ultrasound brain images using shape prior constrained regularized level sets. IEEE J. Biomed. Health Inform. 21(4), 1069–1078 (2016)

    Article  Google Scholar 

  25. Wang, H., et al.: Score-CAM: Score-weighted visual explanations for convolutional neural networks. In: CVPR workshops, pp. 24–25 (2020)

    Google Scholar 

  26. Zhang, B., Xiao, J., Wei, Y., Sun, M., Huang, K.: Reliability does matter: An end-to-end weakly supervised semantic segmentation approach. In: AAAI, vol. 34, pp. 12765–12772 (2020)

    Google Scholar 

  27. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (62271115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, J., Lu, T., Zhang, S., Wang, G. (2023). UM-CAM: Uncertainty-weighted Multi-resolution Class Activation Maps for Weakly-supervised Fetal Brain Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics