Skip to main content

Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14225))

Abstract

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions (CDMA) to effectively leverage unlabeled images. Firstly, we propose a Multi-attention Tri-branch Network (MTNet) that consists of an encoder and a three-branch decoder, with each branch using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Secondly, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoder branches, allowing them to learn from each other’s soft labels to mitigate the negative impact of incorrect pseudo labels in training. Additionally, uncertainty minimization is applied to the average prediction of the three branches, which further regularizes predictions on unlabeled images and encourages inter-branch consistency. Our proposed CDMA was compared with eight state-of-the-art SSL methods on the public DigestPath dataset, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 (2018)

    Google Scholar 

  2. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: CVPR, pp. 2613–2622 (2021)

    Google Scholar 

  3. Da, Q., et al.: Digestpath: a benchmark dataset with challenge review for the pathological detection and segmentation of digestive-system. Med. Image Anal. 80, 102485 (2022)

    Article  Google Scholar 

  4. Fan, D.P., et al.: Inf-Net: automatic covid-19 lung infection segmentation from CT images. IEEE Trans. Med. Imaging 39(8), 2626–2637 (2020)

    Article  Google Scholar 

  5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS, pp. 1–10 (2015)

    Google Scholar 

  6. Hou, X., et al.: Dual adaptive pyramid network for cross-stain histopathology image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 101–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_12

    Chapter  Google Scholar 

  7. Jin, Q., et al.: Semi-supervised histological image segmentation via hierarchical consistency enforcement. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 3–13. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16434-7_1

    Chapter  Google Scholar 

  8. Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between CNN and transformer. In: MIDL, pp. 820–833. PMLR (2022)

    Google Scholar 

  9. Luo, X., et al.: Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med. Image Anal. 80, 102517 (2022)

    Article  Google Scholar 

  10. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS, pp. 1–10 (2019)

    Google Scholar 

  11. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: CVPR, pp. 12674–12684 (2020)

    Google Scholar 

  12. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation’’ blocks. IEEE Trans. Med. Imaging 38(2), 540–549 (2019)

    Article  Google Scholar 

  13. Shen, H., et al.: Deep active learning for breast cancer segmentation on immunohistochemistry images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 509–518. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_49

    Chapter  Google Scholar 

  14. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, pp. 1–10 (2017)

    Google Scholar 

  15. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  16. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  17. Wu, H., Wang, Z., Song, Y., Yang, L., Qin, J.: Cross-patch dense contrastive learning for semi-supervised segmentation of cellular nuclei in histopathologic images. In: CVPR, pp. 11666–11675 (2022)

    Google Scholar 

  18. , Wu, L., et al.: R-drop: regularized dropout for neural networks. In: NeurIPS, pp. 10890–10905 (2021)

    Google Scholar 

  19. Wu, Y., et al.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)

    Article  Google Scholar 

  20. Xie, Y., Lu, H., Zhang, J., Shen, C., Xia, Y.: Deep segmentation-emendation model for gland instance segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 469–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_52

    Chapter  Google Scholar 

  21. Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., Xia, Y.: Pairwise relation learning for semi-supervised gland segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 417–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_40

    Chapter  Google Scholar 

  22. Xu, K., Rui, L., Li, Y., Gu, L.: Feature normalized knowledge distillation for image classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 664–680. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_40

    Chapter  Google Scholar 

  23. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  24. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: CVPR, pp. 11953–11962 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (62271115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, L., Liao, X., Zhang, S., Wang, G. (2023). Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics