Abstract
Three-dimensional (3D) rendering of biomedical volumes can be used to illustrate the diagnosis to patients, train inexperienced clinicians, or facilitate surgery planning for experts. The most realistic visualization can be achieved by the Monte-Carlo path tracing (MCPT) rendering technique which is based on the physical transport of light. However, this technique applied to biomedical volumes has received relatively little attention, because, naively implemented, it does not allow to interact with the data. In this paper, we present our application of MCPT to the biomedical volume rendering–Advanced Realistic Rendering Technique (AR2T), in an attempt to achieve more realism and increase the level of detail in data representation. The main result of our research is a practical framework that includes different visualization techniques: iso-surface rendering, direct volume rendering (DVR) combined with local and global illumination, maximum intensity projection (MIP), and AR2T. The framework allows interaction with the data in high quality for the deterministic algorithms, and in low quality for the stochastic AR2T. A high-quality AR2T image can be generated on user request; the quality improves in real-time, and the process is stopped automatically on the algorithm convergence, or by user, when the desired quality is achieved. The framework enables direct comparison of different rendering algorithms, i.e., utilizing the same view/light position and transfer functions. It therefore can be used by medical experts for immediate one-to-one visual comparison between different data representations in order to collect feedback about the usefulness of the realistic 3D visualization in clinical environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gaussian blur filter shader. https://web.archive.org/web/20150320024135/, http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/. Accessed 08 Mar 2023
Abou El-Seoud, S., Mady, A., Rashed, E.: An interactive mixed reality ray tracing rendering mobile application of medical data in minimally invasive surgeries (2019)
Behlouli, A., Visvikis, D., Bert, J.: Improved woodcock tracking on Monte Carlo simulations for medical applications. Phys. Med. Biol. 63(22), 225005 (2018). https://doi.org/10.1088/1361-6560/aae937
Bueno, M.R., Estrela, C., Granjeiro, J.M., Estrela, M.R.D.A., Azevedo, B.C., Diogenes, A.: Cone-beam computed tomography cinematic rendering: clinical, teaching and research applications. Braz. Oral Research 35 (2021). https://doi.org/10.1590/1807-3107bor-2021.vol35.0024
Cheng, H., Xu, C., Wang, J., Chen, Z., Zhao, L.: Fast and accurate illumination estimation using LDR panoramic images for realistic rendering. IEEE Trans. Visual Comput. Graphics (2022). https://doi.org/10.1109/TVCG.2022.3205614
Dappa, E., Higashigaito, K., Fornaro, J., Leschka, S., Wildermuth, S., Alkadhi, H.: Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7(6), 849–856 (2016). https://doi.org/10.1007/s13244-016-0518-1
Ebert, L.C., et al.: Forensic 3D visualization of CT data using cinematic volume rendering: a preliminary study. Am. J. Roentgenol. 208(2), 233–240 (2017). https://doi.org/10.2214/AJR.16.16499
Eid, M., et al.: Cinematic rendering in CT: a novel, lifelike 3D visualization technique. Am. J. Roentgenol. 209(2), 370–379 (2017). https://doi.org/10.2214/AJR.17.17850
Elshafei, M., et al.: Comparison of cinematic rendering and computed tomography for speed and comprehension of surgical anatomy. JAMA Surg. 154(8), 738–744 (2019). https://doi.org/10.1001/jamasurg.2019.1168
Engel, K.: Real-time Monte-Carlo path tracing of medical volume data. In: GPU Technology Conference, 4–7 Apr 2016. San Jose Convention Center, CA, USA (2016)
Fernando, R., et al.: GPU Gems: Programming Techniques, Tips, and Tricks for Real-time Graphics, vol. 590. Addison-Wesley Reading (2004)
Fong, J., Wrenninge, M., Kulla, C., Habel, R.: Production volume rendering: Siggraph 2017 course. In: ACM SIGGRAPH 2017 Courses, pp. 1–79 (2017). https://doi.org/10.1145/3084873.3084907
Hernell, F., Ljung, P., Ynnerman, A.: Local ambient occlusion in direct volume rendering. IEEE Trans. Visual Comput. Graphics 16(4), 548–559 (2009). https://doi.org/10.1109/TVCG.2009.45
Jensen, H.W., et al.: Monte Carlo ray tracing. In: ACM SIGGRAPH, vol. 5 (2003)
Johnson, P.T., Schneider, R., Lugo-Fagundo, C., Johnson, M.B., Fishman, E.K.: MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. Am. J. Roentgenol. 209(2), 309–312 (2017). https://doi.org/10.2214/AJR.17.17903
Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Visual Comput. Graphics 9(2), 150–162 (2003). https://doi.org/10.1109/TVCG.2003.1196003
Kroes, T., Post, F.H., Botha, C.P.: Exposure render: an interactive photo-realistic volume rendering framework. PloS one 7(7), e38596 (2012). https://doi.org/10.1371/journal.pone.0038586
Kutaish, H., Acker, A., Drittenbass, L., Stern, R., Assal, M.: Computer-assisted surgery and navigation in foot and ankle: state of the art and fields of application. EFORT Open Rev. 6(7), 531–538 (2021). https://doi.org/10.1302/2058-5241.6.200024
Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Pueyo, X., Schröder, P. (eds.) EGSR 1996. E, pp. 91–100. Springer, Vienna (1996). https://doi.org/10.1007/978-3-7091-7484-5_10
Max, N., Chen, M.: Local and global illumination in the volume rendering integral. Technical report, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) (2005)
McNamara, A.: Illumination in computer graphics. The University of Dublin (2003)
Michalet, X.: Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82(4), 041914 (2010). https://doi.org/10.1103/PhysRevE.82.041914
Pachowsky, M.L., et al.: Cinematic rendering in rheumatic diseases-photorealistic depiction of pathologies improves disease understanding for patients. Front. Med. 9, 946106 (2022). https://doi.org/10.3389/fmed.2022.946106
Salama, C.R.: GPU-based Monte-Carlo volume raycasting. In: 15th Pacific Conference on Computer Graphics and Applications (PG 2007), pp. 411–414. IEEE (2007). https://doi.org/10.1109/PG.2007.27
Sariali, E., Mauprivez, R., Khiami, F., Pascal-Mousselard, H., Catonné, Y.: Accuracy of the preoperative planning for cementless total hip arthroplasty. a randomised comparison between three-dimensional computerised planning and conventional templating. Orthop. Traumatol. Surg. Res. 98(2), 151–158 (2012). https://doi.org/10.1016/j.otsr.2011.09.023
Shirley, P., Morley, R.K.: Realistic Ray Tracing. AK Peters Ltd, Natick (2008)
Szirmay-Kalos, L., Tóth, B., Magdics, M.: Free path sampling in high resolution inhomogeneous participating media. In: Computer Graphics Forum, vol. 30, pp. 85–97. Wiley Online Library (2011). https://doi.org/10.1111/j.1467-8659.2010.01831.x
Wang, C., et al.: Patient-specific instrument-assisted minimally invasive internal fixation of calcaneal fracture for rapid and accurate execution of a preoperative plan: a retrospective study. BMC Musculoskelet. Disord. 21, 1–11 (2020). https://doi.org/10.1186/s12891-020-03439-3
Xu, J., et al.: Interactive, in-browser cinematic volume rendering of medical images. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 11, 1–8 (2022). https://doi.org/10.1080/21681163.2022.2145239
Zhou, S.: Woodcock tracking based fast Monte Carlo direct volume rendering method. J. Syst. Simul. 29(5), 1125–1131 (2017). https://doi.org/10.16182/j.issn1004731x.joss.201705026
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Denisova, E., Manetti, L., Bocchi, L., Iadanza, E. (2023). AR2T: Advanced Realistic Rendering Technique for Biomedical Volumes. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-43987-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43986-5
Online ISBN: 978-3-031-43987-2
eBook Packages: Computer ScienceComputer Science (R0)