Skip to main content

AR2T: Advanced Realistic Rendering Technique for Biomedical Volumes

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Three-dimensional (3D) rendering of biomedical volumes can be used to illustrate the diagnosis to patients, train inexperienced clinicians, or facilitate surgery planning for experts. The most realistic visualization can be achieved by the Monte-Carlo path tracing (MCPT) rendering technique which is based on the physical transport of light. However, this technique applied to biomedical volumes has received relatively little attention, because, naively implemented, it does not allow to interact with the data. In this paper, we present our application of MCPT to the biomedical volume rendering–Advanced Realistic Rendering Technique (AR2T), in an attempt to achieve more realism and increase the level of detail in data representation. The main result of our research is a practical framework that includes different visualization techniques: iso-surface rendering, direct volume rendering (DVR) combined with local and global illumination, maximum intensity projection (MIP), and AR2T. The framework allows interaction with the data in high quality for the deterministic algorithms, and in low quality for the stochastic AR2T. A high-quality AR2T image can be generated on user request; the quality improves in real-time, and the process is stopped automatically on the algorithm convergence, or by user, when the desired quality is achieved. The framework enables direct comparison of different rendering algorithms, i.e., utilizing the same view/light position and transfer functions. It therefore can be used by medical experts for immediate one-to-one visual comparison between different data representations in order to collect feedback about the usefulness of the realistic 3D visualization in clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaussian blur filter shader. https://web.archive.org/web/20150320024135/, http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/. Accessed 08 Mar 2023

  2. Abou El-Seoud, S., Mady, A., Rashed, E.: An interactive mixed reality ray tracing rendering mobile application of medical data in minimally invasive surgeries (2019)

    Google Scholar 

  3. Behlouli, A., Visvikis, D., Bert, J.: Improved woodcock tracking on Monte Carlo simulations for medical applications. Phys. Med. Biol. 63(22), 225005 (2018). https://doi.org/10.1088/1361-6560/aae937

    Article  Google Scholar 

  4. Bueno, M.R., Estrela, C., Granjeiro, J.M., Estrela, M.R.D.A., Azevedo, B.C., Diogenes, A.: Cone-beam computed tomography cinematic rendering: clinical, teaching and research applications. Braz. Oral Research 35 (2021). https://doi.org/10.1590/1807-3107bor-2021.vol35.0024

  5. Cheng, H., Xu, C., Wang, J., Chen, Z., Zhao, L.: Fast and accurate illumination estimation using LDR panoramic images for realistic rendering. IEEE Trans. Visual Comput. Graphics (2022). https://doi.org/10.1109/TVCG.2022.3205614

    Article  Google Scholar 

  6. Dappa, E., Higashigaito, K., Fornaro, J., Leschka, S., Wildermuth, S., Alkadhi, H.: Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7(6), 849–856 (2016). https://doi.org/10.1007/s13244-016-0518-1

    Article  Google Scholar 

  7. Ebert, L.C., et al.: Forensic 3D visualization of CT data using cinematic volume rendering: a preliminary study. Am. J. Roentgenol. 208(2), 233–240 (2017). https://doi.org/10.2214/AJR.16.16499

    Article  Google Scholar 

  8. Eid, M., et al.: Cinematic rendering in CT: a novel, lifelike 3D visualization technique. Am. J. Roentgenol. 209(2), 370–379 (2017). https://doi.org/10.2214/AJR.17.17850

    Article  Google Scholar 

  9. Elshafei, M., et al.: Comparison of cinematic rendering and computed tomography for speed and comprehension of surgical anatomy. JAMA Surg. 154(8), 738–744 (2019). https://doi.org/10.1001/jamasurg.2019.1168

    Article  Google Scholar 

  10. Engel, K.: Real-time Monte-Carlo path tracing of medical volume data. In: GPU Technology Conference, 4–7 Apr 2016. San Jose Convention Center, CA, USA (2016)

    Google Scholar 

  11. Fernando, R., et al.: GPU Gems: Programming Techniques, Tips, and Tricks for Real-time Graphics, vol. 590. Addison-Wesley Reading (2004)

    Google Scholar 

  12. Fong, J., Wrenninge, M., Kulla, C., Habel, R.: Production volume rendering: Siggraph 2017 course. In: ACM SIGGRAPH 2017 Courses, pp. 1–79 (2017). https://doi.org/10.1145/3084873.3084907

  13. Hernell, F., Ljung, P., Ynnerman, A.: Local ambient occlusion in direct volume rendering. IEEE Trans. Visual Comput. Graphics 16(4), 548–559 (2009). https://doi.org/10.1109/TVCG.2009.45

    Article  Google Scholar 

  14. Jensen, H.W., et al.: Monte Carlo ray tracing. In: ACM SIGGRAPH, vol. 5 (2003)

    Google Scholar 

  15. Johnson, P.T., Schneider, R., Lugo-Fagundo, C., Johnson, M.B., Fishman, E.K.: MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. Am. J. Roentgenol. 209(2), 309–312 (2017). https://doi.org/10.2214/AJR.17.17903

    Article  Google Scholar 

  16. Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Visual Comput. Graphics 9(2), 150–162 (2003). https://doi.org/10.1109/TVCG.2003.1196003

    Article  Google Scholar 

  17. Kroes, T., Post, F.H., Botha, C.P.: Exposure render: an interactive photo-realistic volume rendering framework. PloS one 7(7), e38596 (2012). https://doi.org/10.1371/journal.pone.0038586

    Article  Google Scholar 

  18. Kutaish, H., Acker, A., Drittenbass, L., Stern, R., Assal, M.: Computer-assisted surgery and navigation in foot and ankle: state of the art and fields of application. EFORT Open Rev. 6(7), 531–538 (2021). https://doi.org/10.1302/2058-5241.6.200024

    Article  Google Scholar 

  19. Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Pueyo, X., Schröder, P. (eds.) EGSR 1996. E, pp. 91–100. Springer, Vienna (1996). https://doi.org/10.1007/978-3-7091-7484-5_10

    Chapter  Google Scholar 

  20. Max, N., Chen, M.: Local and global illumination in the volume rendering integral. Technical report, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) (2005)

    Google Scholar 

  21. McNamara, A.: Illumination in computer graphics. The University of Dublin (2003)

    Google Scholar 

  22. Michalet, X.: Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82(4), 041914 (2010). https://doi.org/10.1103/PhysRevE.82.041914

    Article  MathSciNet  Google Scholar 

  23. Pachowsky, M.L., et al.: Cinematic rendering in rheumatic diseases-photorealistic depiction of pathologies improves disease understanding for patients. Front. Med. 9, 946106 (2022). https://doi.org/10.3389/fmed.2022.946106

    Article  Google Scholar 

  24. Salama, C.R.: GPU-based Monte-Carlo volume raycasting. In: 15th Pacific Conference on Computer Graphics and Applications (PG 2007), pp. 411–414. IEEE (2007). https://doi.org/10.1109/PG.2007.27

  25. Sariali, E., Mauprivez, R., Khiami, F., Pascal-Mousselard, H., Catonné, Y.: Accuracy of the preoperative planning for cementless total hip arthroplasty. a randomised comparison between three-dimensional computerised planning and conventional templating. Orthop. Traumatol. Surg. Res. 98(2), 151–158 (2012). https://doi.org/10.1016/j.otsr.2011.09.023

    Article  Google Scholar 

  26. Shirley, P., Morley, R.K.: Realistic Ray Tracing. AK Peters Ltd, Natick (2008)

    Google Scholar 

  27. Szirmay-Kalos, L., Tóth, B., Magdics, M.: Free path sampling in high resolution inhomogeneous participating media. In: Computer Graphics Forum, vol. 30, pp. 85–97. Wiley Online Library (2011). https://doi.org/10.1111/j.1467-8659.2010.01831.x

  28. Wang, C., et al.: Patient-specific instrument-assisted minimally invasive internal fixation of calcaneal fracture for rapid and accurate execution of a preoperative plan: a retrospective study. BMC Musculoskelet. Disord. 21, 1–11 (2020). https://doi.org/10.1186/s12891-020-03439-3

    Article  Google Scholar 

  29. Xu, J., et al.: Interactive, in-browser cinematic volume rendering of medical images. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 11, 1–8 (2022). https://doi.org/10.1080/21681163.2022.2145239

  30. Zhou, S.: Woodcock tracking based fast Monte Carlo direct volume rendering method. J. Syst. Simul. 29(5), 1125–1131 (2017). https://doi.org/10.16182/j.issn1004731x.joss.201705026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Denisova .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 51889 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denisova, E., Manetti, L., Bocchi, L., Iadanza, E. (2023). AR2T: Advanced Realistic Rendering Technique for Biomedical Volumes. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics