Skip to main content

Part of the book series: Developments in Applied Phycology ((DAPH,volume 13))

  • 61 Accesses

Abstract

Plants, algae, and photosynthetic bacteria all contain carotenoids, which are lipid-soluble natural compounds. They can act as both light-harvesting complex and photoprotectors. Due to their nature, they are able to neutralize the effect of the presence of singlet oxygen and free radicals, acting as quenchers; for this function, an important and crucial role as an antioxidant has been attributed to a large number of carotenoids. Their production has been studied in several microalgal species, which represent a natural source of these antioxidants. In particular, Haematococcus, Chlamydomonas, Chlorella, Dunaliella, diatoms such as Phaeodactylum and Isochrysis, and dinoflagellates are able to synthesize large amounts of carotenoids. Among the most powerful antioxidant carotenoids, the xanthophylls loroxanthin, neoxanthin, lutein, violaxanthin, antheraxanthin, zeaxanthin, and α-carotene and β-carotene are the ones most synthesized under photo-oxidative stress conditions. Under physiological stresses, such as high light exposure, nutrient limitation-starvation, excessive low-high temperatures, the photosynthetic activity decreases, and different metabolic pathways are activated. The study of the physiological response to different stresses helps to understand the mechanisms which regulate the accumulation of antioxidant compounds. This information can be useful for optimizing the growth conditions of microalgal strains, the high carotenoid producers, for increasing their productivity, in terms of both antioxidants and biomass, and for the scale-up of the process from laboratory to outdoor cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Hattori H, Hirano M (2007) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella Striolata Var. Food Chem 100(2):656–661

    CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    CAS  PubMed  Google Scholar 

  • Allen JF (2003) State transitions- a question of balance. Science 299:1530–1532

    CAS  PubMed  Google Scholar 

  • Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S (2019) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59:1880–1902

    CAS  PubMed  Google Scholar 

  • Antal T, Volgusheva AA, Kukarskih GP, Bulychev AA, Krendeleva TE, Rubin AB (2006) Effects of sulfur limitation on photosystem II functioning in Chlamydomonas reinhardtiias probed by chlorophyll a fluorescence. Physiol Plant 128:360–367

    CAS  Google Scholar 

  • Aro EM, Virgin I, Anderson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Byophys Acta 1143:113–134

    CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  PubMed  Google Scholar 

  • Barghbani R, Rezaei K, Javanshir A (2012) Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi’s experimental approach. Int J Biotechnol Wellness Ind 1:128–133

    Google Scholar 

  • Belotti G, de Caprariis B, De Filippis P, Scarsella M, Verdone N (2014) Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenergy 61:187–195

    CAS  Google Scholar 

  • Ben-Amoz A (1991) The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresour Technol 38:233–235

    Google Scholar 

  • Benavente-Valdésa JR, Aguilara C, Contreras-Esquivela JC, Méndez-Zavalab A, Montañezb J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol Rep 10:117–125

    Google Scholar 

  • Björkman O (1987) High irradiance stress in higher plants and interaction with other stress factors. Photosynth Res 4:11–18

    Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652

    Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52(4):407–418

    CAS  Google Scholar 

  • Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391

    CAS  Google Scholar 

  • Briantais JM, Vermotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of the chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    CAS  PubMed  Google Scholar 

  • Butler T, McDougall G, Campbell R, Stanley M, Day J (2018) Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology 7:2

    Google Scholar 

  • Campenni L, Nobre LB, Santos CA, Oliveira AC, Aires-Barros MR, Palavra AMF, Gouveia L (2012) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97(3):1383–1393

    PubMed  Google Scholar 

  • Chen JH, Chen CY, Hasunuma T, Kondo A, Chang CH, Ng IS, Chang JS (2019) Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresour Technol 278:17–25

    CAS  PubMed  Google Scholar 

  • Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela et al (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for psy and pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 10:602–611

    CAS  Google Scholar 

  • Dall’Osto L, Caffari S, Bassi R (2005) A mechanism of nonphotochemical quenching energy dissipation, independent from PsbS, revealed by conformational change in the antenna protein CP26. Plant Cell 17:1217–1232

    PubMed  PubMed Central  Google Scholar 

  • Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp (Chlorophyta). J Biotechnol 76:51–59

    PubMed  Google Scholar 

  • Dineshkumar R, Subramanian G, Dash SK, Sen R (2016) Development of an optimal light-feeding strategy coupled with semicontinuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochem Eng J 113:47–56

    CAS  Google Scholar 

  • Ding W, Cui J, Zhao YT, Han BY, Li T, Zhao P et al (2019) Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation. Bioresour Technol 2019:285. https://doi.org/10.1016/j.biortech.2019.121334

    Article  CAS  Google Scholar 

  • El-Mekkawi SA, Hussein HS, El-Enin SAA, El-Ibiari NN (2019) Assessment of stress conditions for carotenoids accumulation in Chlamydomonas reinhardtii as added-value algal products. Bull Natl Res Cent 43:130

    Google Scholar 

  • Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    CAS  Google Scholar 

  • Faraloni C, Torzillo G (2010) Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii QB binding D1 protein mutants under sulfur starvation: changes in chlorophyll fluorescence and pigment composition. J Phycol 46(4):788–799

    CAS  Google Scholar 

  • Faraloni C, Torzillo G (2017) Synthesis of antioxidant carotenoids in microalgae in response to physiological stress. Intech Open. https://doi.org/10.5772/67843

    Book  Google Scholar 

  • Faraloni C, Di Lorenzo T, Bonetti A (2021) Impact of light stress on the synthesis of both antioxidants polyphenols and carotenoids, as fast Photoprotective response in Chlamydomonas reinhardtii: new prospective for biotechnological potential of this microalga. Symmetry 213(11):2220

    Google Scholar 

  • Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2010) Biotechnological production of lutein and its applications. Appl Microb Biotechnol 86:27–40

    Google Scholar 

  • Forján E, Garbayo I, Casal C, Vílchez C (2022) Enhancement of carotenoid production in Nannochloropsis by phosphate and Sulphur limitation. Communicating current research and educational topics and trends in applied microbiology A. Méndez-Vilas (Ed.)

    Google Scholar 

  • Gao F, Cabanelas IIT, Wijffels RH, Barbos MJ (2020) Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresour Technol 315:123894

    CAS  PubMed  Google Scholar 

  • Gilmore AM, Hazlett TL, Govindjee (1995) Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence-formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92:2273–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore AM, Yamamoto H (1993) Linear models relating xanthophylls and acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–68

    CAS  PubMed  Google Scholar 

  • Gong M, Bassi A (2017) Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Appl Biochem Biotechnol 183:652–671

    CAS  PubMed  Google Scholar 

  • Gupta AK, Seth K, Maheshwari K, Baroliya PK, Meena M, Kumar A, Vinayak V, Harish (2021) Biosynthesis and extraction of high-value carotenoid from algae. Front Biosci (Landmark Ed) 6:171–190

    Google Scholar 

  • Gwak Y, Hwang YS, Wang B, Kim M, Jeong J, Lee CG et al (2014) Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot 65:4317–4334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadi MR, Shariati M, Afsharzadeh S (2008) Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the gave-Khooni salt marsh, Iran. Biotechnol Bioprocess Eng 13(5):540–544

    CAS  Google Scholar 

  • Haldimann P, Tsimilli-Michael M (2002) Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a rise in spinach chloroplasts. Photosynth Res 74:37–50

    CAS  PubMed  Google Scholar 

  • Hill R, Larkum AWD, Frankart C, Kühl M, Ralph PMJ (2004) Loss of functional photosystem II reaction centres in zooxanthellae of corals exposed to bleaching conditions: using fluorescence rise kinetics. Photosynth Res 82:59–72

    CAS  PubMed  Google Scholar 

  • Huang Q, Jiang F, Wang L, Yang C (2017) Design of Photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329

    Google Scholar 

  • Jin E, Polle JEW, Lee HK, Hyun SM, Chang M (2003) Xanthophylls in microalgae from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174

    CAS  Google Scholar 

  • Kim SM, Kang SW, Kwon ON, Chung D, Pan CH (2012a) Fucoxanthin as a major carotenoid in Isochrysis aff. Galbana: characterization of extraction for commercial application. J Korean Soc Appl Biol Chem 55:477–483

    CAS  Google Scholar 

  • Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH (2012b) A potential commercial source of Fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    CAS  PubMed  Google Scholar 

  • Kleinegris DMM, Janssen M, Brandeburg WA, Wijffels RH (2011) Continuous production of carotenoids from Dunaliella salina. Enzyme Microb Biotechnol 85:289–295

    Google Scholar 

  • Koo SY, Cha KH, Song DG, Chung D, Pan CH (2011) Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. Environ Boil Fishes 24:725–730

    Google Scholar 

  • Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH et al (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648

    CAS  PubMed  Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

    CAS  PubMed  Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a rise measured under high intensity of exciting light. Funct Plan Biol 33:9–30

    Google Scholar 

  • Li Y, Huang J (2009) High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis. J Phycol 45(3):635–641

    CAS  PubMed  Google Scholar 

  • Li Y, Sun H, Wu T, Fu Y, He Y, Ma X, Chen F (2019) Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. Bioresour Technol 282:94–102

    CAS  PubMed  Google Scholar 

  • Lia X, Wanga X, Duana C, Yia S, Gaob Z, Xiaoc C, Agathosd SN, Wange G, Lia J (2020) Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 43:107602

    Google Scholar 

  • Liang C, Zhai Y, Xu D, Ye N, Zhang X, Wang Y, Zhang W, Yu J (2015) Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis. Gracias Y Aceites 66(2):e077

    Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of Astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515

    PubMed  PubMed Central  Google Scholar 

  • Liyanaarachchi VC, Nishshanka GKSH, Premaratne RGMM, Ariyadasa TU, Nimarshana PHV, Malik A (2020) Astaxanthin accumulation in the green microalga Haematococcus pluvialis: effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnol Rep 28:e00538

    Google Scholar 

  • Ma R, Zhang Z, Ho SH, Ruan C, Li J, Xie Y, Shi X, Liu L, Chen J (2020) Two-stage bioprocess for hyper-production of lutein from microalga Chlorella sorokiniana FZU60: effects of temperature, light intensity, and operation strategies. Algal Res 52:102119

    Google Scholar 

  • Mandal S, Yadav S, Yadav S, Nema RK (2009) Antioxidants a review. J Chem Pharmac Res 1(102):104

    Google Scholar 

  • McClure DD, Nightingale JK, Luiz A, Black S, Zhu J, Kavanagh JM (2019) Pilot-scale production of lutein using Chlorella vulgaris. Algal Res 44:101707

    Google Scholar 

  • Mitra M, Mishra S (2019) A comparative analysis of different extraction solvent systems on the extractability of eicosapentaenoic acid from the marine eustigmatophyte Nannochloropsis oceanica. Algal Res 38:101387

    Google Scholar 

  • Mulders KJM, Janssen JH, Martens DE, Wijffels RH, Lamers PP (2014a) Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis. Algal Res 6:8–16

    Google Scholar 

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014b) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    CAS  PubMed  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: 1. Saturation characteristics and partial control by photosystem II acceptor side. Z Naturforsch 42:1246–1254

    CAS  Google Scholar 

  • Niyogi KK, Björkman O, Grossman A (1997) The role of specific xanthophylls in photoprotection. Proc Natl Acad Sci 94:14162–14167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niyogi KK, Li XP, Rosemberg V, Jung HS (2004) Is the PsbS the side of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    PubMed  Google Scholar 

  • Petrushkina M, Gusev E, Sorokin B, Zotko N, Mamaeva A, Filimonova A, Kulikovskiy M, Maltsev Y, Yampolsky I, Guglya E et al (2017) Fucoxanthin production by heterokont microalgae. Algal Res 24:387–393

    Google Scholar 

  • Přibyl P, Pilný J, Cepák V, Kaštánek P (2016) The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res 16:69–75

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    CAS  PubMed  Google Scholar 

  • Pushpalatha S, Sangeetha R, Ariraman S, Ashokkumar B, Varalakshmi P (2020) Photocatalyst (TiO2) as an enhancer: an attempt to enhance the production of carotenoids and lipids with the combined oxidative stresses in Coelastrella sp. MClean Technol Environ Policy 23:41–53

    Google Scholar 

  • Rabbani S, Beyer P, von Lintig J, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116(4):1239–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rammuni M, Ariyadasa TU, Nimarshana P, Attalage R (2018) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. Pluvialis and β-carotene from D. Salina. Food Chem 277:128–134

    PubMed  Google Scholar 

  • Recht L, Töpfer N, Batushansky A, Sikron N, Zarka A, Gibon Y, Nikolosky Z, Fait A, Boussiba S (2014) Metabolite profiling and integrative modeling reveal metabolic constraints for carbon portioning under nitrogen starvation in the green algae Haematococcus pluvialis. JBC 289(44):30387–30403

    CAS  Google Scholar 

  • Ren Y, Sun H, Deng J, Huang J, Chen F (2021) Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Mar Drugs 19:713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schülera LM, Santosa T, Pereiraa H, Duartea P, Gangadhara KN, Florindob C, Schulzec PSC, Barreiraa L, Varela JCS (2020) Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Res 45:101732

    Google Scholar 

  • Serra AT, Silva SD, Pleno de Gouveia L, Alexandre AMRC, Pereira CV, Pereira AB, Partidário C, Silva NE, Bohn T, Gonçalves VSS et al (2021) A single dose of marine Chlorella vulgaris increases plasma concentrations of lutein, β-carotene and zeaxanthin in healthy male volunteers. Antioxidants 10:1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531

    PubMed  PubMed Central  Google Scholar 

  • Shaker S, Morowvat MH, Ghasemi Y (2017) Effects of sulfur, iron and manganese starvation on growth, β-carotene production and lipid profile of Dunaliella salina. J Young Pharm 9(1):43–46

    CAS  Google Scholar 

  • Singh DP, Khattar JS, Rajput A, Chaudhary R, Singh R (2019) High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS One 14(9):e0221930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser R, Srivastava A, Govindge G (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    CAS  Google Scholar 

  • Torzillo G, Goksan T, Faraloni C, Kopecky J, Masojidek J (2003) Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J Appl Phycol 15:127–136

    CAS  Google Scholar 

  • Torzillo G, Faraloni C, Silva AM, Kopecky J, Pilný J, Masojídek J (2012) Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown in outdoors photobioreactors and open ponds. Eur J Phycol 47(2):169–181

    CAS  Google Scholar 

  • Wan M, Hou D, Li Y, Fan J, Huang J, Liang S, Wang W, Pan R, Wang J, Li S (2014) The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour Technol 163:26–32

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang MM, Sun Z, Liu SF, Qin ZH, Mou J, Zhou ZG, Lin CSK (2020) Sustainable lipid and lutein production from chlorella mixotrophic fermentation by food waste hydrolysate. J Hazard Mater 400:123258

    CAS  PubMed  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11:2667–2681

    PubMed  PubMed Central  Google Scholar 

  • Yaakob Z, Kamarudin KF, Rajikumar R, Takriff MS, Badar SN (2014) The current methods for the biomass production of the microalgae from wastewaters: an overview. World Appl Sci J 31(10):1744–1758

    CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51:6–648

    Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversion of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Faraloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faraloni, C., Torzillo, G. (2024). Induction of Carotenoid Synthesis in Microalgae with Reference to Their Production Outdoors. In: Martínez-Roldán, A.d.J. (eds) Biotechnological Processes for Green Energy, and High Value Bioproducts by Microalgae, and Cyanobacteria Cultures. Developments in Applied Phycology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-43969-8_10

Download citation

Publish with us

Policies and ethics