Skip to main content

VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)


We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.


  1. Alblas, D., Brune, C., Yeung, K.K., Wolterink, J.M.: Going off-grid: continuous implicit neural representations for 3D vascular modeling. In: Camara, O., et al. (eds.) STACOM 2022. LNCS, vol. 13593, pp. 79–90. Springer, Cham (2022).

    Chapter  Google Scholar 

  2. Alblas, D., Brune, C., Wolterink, J.M.: Deep learning-based carotid artery vessel wall segmentation in black-blood MRI using anatomical priors. arXiv preprint arXiv:2112.01137 (2021)

  3. Bullitt, E., et al.: Vascular attributes and malignant brain tumors. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 671–679. Springer, Heidelberg (2003).

    Chapter  Google Scholar 

  4. Bullitt, E., Gerig, G., Pizer, S.M., Lin, W., Aylward, S.R.: Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging 22(9), 1163–1171 (2003)

    Article  Google Scholar 

  5. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  6. Felkel, P., Wegenkittl, R., Buhler, K.: Surface models of tube trees. In: Proceedings Computer Graphics International, pp. 70–77. IEEE (2004)

    Google Scholar 

  7. Galarreta-Valverde, M.A., Macedo, M.M., Mekkaoui, C., Jackowski, M.P.: Three-dimensional synthetic blood vessel generation using stochastic l-systems. In: Medical Imaging 2013: Image Processing, vol. 8669, pp. 414–419. SPIE (2013)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  9. Hamarneh, G., Jassi, P.: Vascusynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Comput. Med. Imaging Graph. 34(8), 605–616 (2010)

    Article  Google Scholar 

  10. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  12. Kazeminia, S., et al.: GANs for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)

    Article  Google Scholar 

  13. Lang, S., et al.: Three-dimensional quantification of capillary networks in healthy and cancerous tissues of two mice. Microvasc. Res. 84(3), 314–322 (2012)

    Article  Google Scholar 

  14. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: generative recursive autoencoders for shape structures. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)

    Google Scholar 

  15. Li, M., et al.: Grains: generative recursive autoencoders for indoor scenes. ACM Trans. Graph. (TOG) 38(2), 1–16 (2019)

    Article  Google Scholar 

  16. Looks, M., Herreshoff, M., Hutchins, D., Norvig, P.: Deep learning with dynamic computation graphs. arXiv preprint arXiv:1702.02181 (2017)

  17. Merrem, A., Bartzsch, S., Laissue, J., Oelfke, U.: Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation. Phys. Med. Biol. 62(10), 3902 (2017)

    Article  Google Scholar 

  18. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: an autoregressive generative model of 3D meshes. In: International Conference on Machine Learning, pp. 7220–7229. PMLR (2020)

    Google Scholar 

  19. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  20. Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: recursive autoencoders for document layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 544–545 (2020)

    Google Scholar 

  21. Rauch, N., Harders, M.: Interactive synthesis of 3D geometries of blood vessels. In: Theisel, H., Wimmer, M. (eds.) Eurographics 2021 - Short Papers. The Eurographics Association (2021)

    Google Scholar 

  22. Schneider, M., Reichold, J., Weber, B., Székely, G., Hirsch, S.: Tissue metabolism driven arterial tree generation. Med. Image Anal. 16(7), 1397–1414 (2012)

    Article  Google Scholar 

  23. Socher, R.: Recursive deep learning for natural language processing and computer vision. Stanford University (2014)

    Google Scholar 

  24. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 129–136 (2011)

    Google Scholar 

  25. Talou, G.D.M., Safaei, S., Hunter, P.J., Blanco, P.J.: Adaptive constrained constructive optimisation for complex vascularisation processes. Sci. Rep. 11(1), 1–22 (2021)

    Article  Google Scholar 

  26. Tetteh, G., et al.: Deepvesselnet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. Front. Neurosci. 1285 (2020)

    Google Scholar 

  27. Wolterink, J.M., Leiner, T., Isgum, I.: Blood vessel geometry synthesis using generative adversarial networks. arXiv preprint arXiv:1804.04381 (2018)

  28. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  29. Wu, J., Hu, Q., Ma, X.: Comparative study of surface modeling methods for vascular structures. Comput. Med. Imaging Graph. 37(1), 4–14 (2013)

    Article  Google Scholar 

  30. Xu, M., et al.: Generative AI-empowered simulation for autonomous driving in vehicular mixed reality metaverses. arXiv preprint arXiv:2302.08418 (2023)

  31. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4541–4550 (2019)

    Google Scholar 

  32. Yang, X., Xia, D., Kin, T., Igarashi, T.: Intra: 3D intracranial aneurysm dataset for deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2656–2666 (2020)

    Google Scholar 

  33. Zamir, M.: Arterial branching within the confines of fractal l-system formalism. J. Gen. Physiol. 118(3), 267–276 (2001)

    Article  Google Scholar 

Download references


This project was supported by grants from Salesforce, USA (Einstein AI 2020), National Scientific and Technical Research Council (CONICET), Argentina (PIP 2021-2023 GI - 11220200102981CO), and Universidad Torcuato Di Tella, Argentina.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paula Feldman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9317 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feldman, P., Fainstein, M., Siless, V., Delrieux, C., Iarussi, E. (2023). VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics