Skip to main content

RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

With an excellent balance between speed and accuracy, cutting-edge YOLO frameworks have become one of the most efficient algorithms for object detection. However, the performance of using YOLO networks is scarcely investigated in brain tumor detection. We propose a novel YOLO architecture with Reparameterized Convolution based on channel Shuffle (RCS-YOLO). We present RCS and a One-Shot Aggregation of RCS (RCS-OSA), which link feature cascade and computation efficiency to extract richer information and reduce time consumption. Experimental results on the brain tumor dataset Br35H show that the proposed model surpasses YOLOv6, YOLOv7, and YOLOv8 in speed and accuracy. Notably, compared with YOLOv7, the precision of RCS-YOLO improves by 1%, and the inference speed by 60% at 114.8 images detected per second (FPS). Our proposed RCS-YOLO achieves state-of-the-art performance on the brain tumor detection task. The code is available at https://github.com/mkang315/RCS-YOLO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amin, J., Muhammad, S., Haldorai, A., Yasmin, M., Nayak, R.S.: Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell. Syst. 8, 3161–3183 (2022)

    Article  Google Scholar 

  2. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style ConvNets great again. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13733–13742. IEEE, Piscataway (2021)

    Google Scholar 

  3. Hamada, A.: Br35H : : brain tumor detection 2020. Kaggle (2020). https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection

  4. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Piscataway (2016)

    Google Scholar 

  7. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  8. Huisman, T.A.: Tumor-like lesions of the brain. Cancer Imaging 9(Special issue A), S10–S13 (2009)

    Google Scholar 

  9. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: DenseNet: implementing efficient ConvNet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  10. Jocher, G.: YOLOv5 (6.0/6.1) brief summary. GitHub (2022). https://github.com/ultralytics/yolov5/issues/6998

  11. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (version 8.0.0). GitHub (2023). https://github.com/ultralytics/ultralytics

  12. Kumar, V.V., Prince, P.G.K.: Brain lesion detection and analysis - a review. In: 2021 Fifth International Conference on I-SMAC (IoT in Social. Mobile, Analytics and Cloud) (I-SMAC), pp. 993–1001. Piscataway, IEEE (2021)

    Google Scholar 

  13. Lather, M., Singh, P.: Investigating brain tumor segmentation and detection techniques. Procedia Comput. Sci. 167, 121–130 (2020)

    Article  Google Scholar 

  14. Lee, Y., Hwang, J.-W., Lee, S., Bae, Y., Park, J.: An energy and GPU-computation efficient backbone network for real-time object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 752–760. IEEE, Piscataway (2019)

    Google Scholar 

  15. Lee, Y., Park, J.: CenterMask: real-time anchor-free instance segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13903–13912. IEEE, Piscataway (2020)

    Google Scholar 

  16. Li, C., et al.: YOLOv6: a single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 (2022)

  17. Li, C., et al.: YOLOv6 v3.0: a full-scale reloading. arXiv preprint arXiv:2301.05586 (2023)

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8759–8768. IEEE, Piscataway (2018)

    Google Scholar 

  20. Lotlikar, V.S., Satpute, N., Gupta, A.: Brain tumor detection using machine learning and deep learning: a review. Curr. Med. Imaging 18(6), 604–622 (2022)

    Article  Google Scholar 

  21. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  22. Nazir, M., Shakil, S., Khurshid, K.: Role of deep learning in brain tumor detection and classification (2015 to 2020): a review. Comput. Med. Imaging Graph. 91, 101940 (2021)

    Article  Google Scholar 

  23. Rehman, A., Butt, M.A., Zaman, M.: A survey of medical image analysis using deep learning approaches. In: 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), pp. 1115–1120. IEEE, Piscataway (2021)

    Google Scholar 

  24. Shanishchara, P., Patel, V.D.: Brain tumor detection using supervised learning: a survey. In: 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), pp. 1159–1165. IEEE, Piscataway (2022)

    Google Scholar 

  25. Shirwaikar, R.D., Ramesh, K., Hiremath, A.: A survey on brain tumor detection using machine learning. In: 2021 International Conference on Forensics. Analytics, Big Data, Security (FABS), pp. 1–6. IEEE, Piscataway (2021)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  27. Sravya, V., Malathi, S.: Survey on brain tumor detection using machine learning and deep learning. In: 2021 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–3. IEEE, Piscataway (2021)

    Google Scholar 

  28. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. IEEE, Piscataway (2015)

    Google Scholar 

  29. Wang, C.-Y.: Yolov7.yaml. GitHub (2022). https://github.com/WongKinYiu/yolov7/blob/main/cfg/training/yolov7.yaml

  30. Wang, C.-Y.: Yolov4-csp.yaml. GitHub (2022). https://github.com/WongKinYiu/yolov7/blob/main/cfg/baseline/yolov4-csp.yaml

  31. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  32. Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1571–1580. IEEE, Piscataway (2020)

    Google Scholar 

  33. Wang, C.-Y., Liao, H.-Y.M., Yeh, I.-H.: Designing network design strategies through gradient path analysis. arXiv preprint arXiv:2211.04800 (2022)

  34. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856. IEEE, Piscataway (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee-Ming Ting .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 580 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, M., Ting, CM., Ting, F.F., Phan, R.CW. (2023). RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor Detection. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics