Skip to main content

Category-Level Regularized Unlabeled-to-Labeled Learning for Semi-supervised Prostate Segmentation with Multi-site Unlabeled Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Segmenting prostate from MRI is crucial for diagnosis and treatment planning of prostate cancer. Given the scarcity of labeled data in medical imaging, semi-supervised learning (SSL) presents an attractive option as it can utilize both limited labeled data and abundant unlabeled data. However, if the local center has limited image collection capability, there may also not be enough unlabeled data for semi-supervised learning to be effective. To overcome this issue, other partner centers can be consulted to help enrich the pool of unlabeled images, but this can result in data heterogeneity, which could hinder SSL that functions under the assumption of consistent data distribution. Tailoring for this important yet under-explored scenario, this work presents a novel Category-level regularized Unlabeled-to-Labeled (CU2L) learning framework for semi-supervised prostate segmentation with multi-site unlabeled MRI data. Specifically, CU2L is built upon the teacher-student architecture with the following tailored learning processes: (i) local pseudo-label learning for reinforcing confirmation of the data distribution of the local center; (ii) category-level regularized non-parametric unlabeled-to-labeled learning for robustly mining shared information by using the limited expert labels to regularize the intra-class features across centers to be discriminative and generalized; (iii) stability learning under perturbations to further enhance robustness to heterogeneity. Our method is evaluated on prostate MRI data from six different clinical centers and shows superior performance compared to other semi-supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. The Cancer Imaging Arch. 370(6), 5 (2015)

    Google Scholar 

  2. Chen, J., et al.: Adaptive hierarchical dual consistency for semi-supervised left atrium segmentation on cross-domain data. IEEE Trans. Med. Imaging 41(2), 420–433 (2021)

    Article  Google Scholar 

  3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  4. Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31 (2015)

    Article  Google Scholar 

  5. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  6. Liu, J., Desrosiers, C., Zhou, Y.: Semi-supervised medical image segmentation using cross-model pseudo-supervision with shape awareness and local context constraints. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 140–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_14

    Chapter  Google Scholar 

  7. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  8. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imaging 39(9), 2713–2724 (2020)

    Article  Google Scholar 

  9. Luo, X., Chen, J., Song, T., Chen, Y., Wang, G., Zhang, S.: Semi-supervised medical image segmentation through dual-task consistency. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  10. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  11. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12674–12684 (2020)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 30, pp. 4080–4090 (2017)

    Google Scholar 

  14. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  15. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  16. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Verma, V., et al.: Interpolation consistency training for semi-supervised learning. Neural Netw. 145, 90–106 (2022)

    Article  Google Scholar 

  18. Wang, G., et al.: A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Trans. Med. Imaging 39(8), 2653–2663 (2020)

    Article  Google Scholar 

  19. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  20. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 34–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_4

    Chapter  Google Scholar 

  21. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  22. Xu, Z., et al.: Anti-interference from noisy labels: Mean-teacher-assisted confident learning for medical image segmentation. IEEE Trans. Med. Imaging 41, 3062–3073 (2022)

    Article  Google Scholar 

  23. Xu, Z., et al.: Noisy labels are treasure: mean-teacher-assisted confident learning for hepatic vessel segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_1

    Chapter  Google Scholar 

  24. Xu, Z., et al.: Ambiguity-selective consistency regularization for mean-teacher semi-supervised medical image segmentation. Med. Image Anal. 88, 102880 (2023)

    Google Scholar 

  25. Xu, Z., et al.: All-around real label supervision: cyclic prototype consistency learning for semi-supervised medical image segmentation. IEEE J. Biomed. Health Inform. 26(7), 3174–3184 (2022)

    Article  MathSciNet  Google Scholar 

  26. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  27. Zhai, S., Wang, G., Luo, X., Yue, Q., Li, K., Zhang, S.: PA-seg: learning from point annotations for 3D medical image segmentation using contextual regularization and cross knowledge distillation. IEEE Trans. Med. Imaging 42(8), 2235–2246 (2023). https://doi.org/10.1109/TMI.2023.3245068

  28. Zhang, W., et al.: BoostMIS: boosting medical image semi-supervised learning with adaptive pseudo labeling and informative active annotation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20666–20676 (2022)

    Google Scholar 

Download references

Acknowledgement

This research was done with Tencent Jarvis Lab and Tencent Healthcare (Shenzhen) Co., LTD and supported by General Research Fund from Research Grant Council of Hong Kong (No. 14205419) and the National Key R&D Program of China (No. 2020AAA0109500 and No. 2020AAA0109501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghuan Lu or Raymond Kai-yu Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z. et al. (2023). Category-Level Regularized Unlabeled-to-Labeled Learning for Semi-supervised Prostate Segmentation with Multi-site Unlabeled Data. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics