Skip to main content

Distilling BlackBox to Interpretable Models for Efficient Transfer Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (e.g., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a mixture of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 6046–6054 (2022)

    Google Scholar 

  2. Chu, B., Madhavan, V., Beijbom, O., Hoffman, J., Darrell, T.: Best practices for fine-tuning visual classifiers to new domains. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 435–442. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_34

    Chapter  Google Scholar 

  3. Clough, J.R., Oksuz, I., Puyol-Antón, E., Ruijsink, B., King, A.P., Schnabel, J.A.: Global and local interpretability for cardiac MRI classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 656–664. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_72

    Chapter  Google Scholar 

  4. Ghosh, S., Yu, K., Arabshahi, F., Batmanghelich, K.: Dividing and conquering a BlackBox to a mixture of interpretable models: route, interpret, repeat. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research. vol. 202, pp. 11360–11397. PMLR (2023). https://proceedings.mlr.press/v202/ghosh23c.html

  5. Ghosh, S., Yu, K., Arabshahi, F., Batmanghelich, K.: Tackling shortcut learning in deep neural networks: An iterative approach with interpretable models (2023)

    Google Scholar 

  6. Graziani, M., Andrearczyk, V., Marchand-Maillet, S., Müller, H.: Concept attribution: explaining CNN decisions to physicians. Comput. Biol. Med. 123, 103865 (2020)

    Article  Google Scholar 

  7. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 590–597 (2019)

    Google Scholar 

  10. Jain, S., et al.: RadGraph: Extracting clinical entities and relations from radiology reports. arXiv preprint arXiv:2106.14463 (2021)

  11. Johnson, A., et al.: MIMIC-CXR-JPG-chest radiographs with structured labels

    Google Scholar 

  12. Kandel, I., Castelli, M.: How deeply to fine-tune a convolutional neural network: a case study using a histopathology dataset. Appl. Sci. 10(10), 3359 (2020)

    Article  Google Scholar 

  13. Kim, B., et al.: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav) (2017). arXiv preprint arXiv:1711.11279 (2017)

  14. Koh, P.W., et al.: Concept bottleneck models. In: International Conference on Machine Learning, pp. 5338–5348. PMLR (2020)

    Google Scholar 

  15. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. vol. 3, p. 896 (2013)

    Google Scholar 

  16. Rabanser, S., Thudi, A., Hamidieh, K., Dziedzic, A., Papernot, N.: Selective classification via neural network training dynamics. arXiv preprint arXiv:2205.13532 (2022)

  17. Rajpurkar, P., et al.: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  18. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable machine learning: fundamental principles and 10 grand challenges. Stat. Surv. 16, 1–85 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarkar, A., Vijaykeerthy, D., Sarkar, A., Balasubramanian, V.N.: Inducing semantic grouping of latent concepts for explanations: An ante-hoc approach. arXiv preprint arXiv:2108.11761 (2021)

  20. Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event extraction with contextualized span representations. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). pp. 5784–5789. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1585, https://aclanthology.org/D19-1585

  21. Wang, Y.X., Ramanan, D., Hebert, M.: Growing a brain: fine-tuning by increasing model capacity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2471–2480 (2017)

    Google Scholar 

  22. Yan, W., et al.: MRI manufacturer shift and adaptation: increasing the generalizability of deep learning segmentation for MR images acquired with different scanners. Radiol. Artif. Intell. 2(4), e190195 (2020)

    Google Scholar 

  23. Yeche, H., Harrison, J., Berthier, T.: UBS: a dimension-agnostic metric for concept vector interpretability applied to radiomics. In: Suzuki, K. (ed.) ML-CDS/IMIMIC -2019. LNCS, vol. 11797, pp. 12–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33850-3_2

    Chapter  Google Scholar 

  24. Yu, K., Ghosh, S., Liu, Z., Deible, C., Batmanghelich, K.: Anatomy-Guided Weakly-Supervised Abnormality Localization in Chest X-rays. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science. vol. 13435. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_63

  25. Yuksekgonul, M., Wang, M., Zou, J.: Post-hoc concept bottleneck models. arXiv preprint arXiv:2205.15480 (2022)

  26. Zarlenga, M.E., et al.: Concept embedding models. arXiv preprint arXiv:2209.09056 (2022)

Download references

Acknowledgement

This work was partially supported by NIH Award Number 1R01HL141813-01 and the Pennsylvania Department of Health. We are grateful for the computational resources from Pittsburgh Super Computing grant number TG-ASC170024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Ghosh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1519 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, S., Yu, K., Batmanghelich, K. (2023). Distilling BlackBox to Interpretable Models for Efficient Transfer Learning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics