Skip to main content

Aneurysm Pose Estimation with Deep Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

Abstract

The diagnosis of unruptured intracranial aneurysms from time-of-flight Magnetic Resonance Angiography (TOF-MRA) images is a challenging clinical problem that is extremely difficult to automate. We propose to go beyond the mere detection of each aneurysm and also estimate its size and the orientation of its main axis for an immediate visualization in appropriate reformatted cut planes. To address this issue, and inspired by the idea behind YOLO architecture, a novel one-stage deep learning approach is described to simultaneously estimate the localization, size and orientation of each aneurysm in 3D images. It combines fast and approximate annotation, data sampling and generation to tackle the class imbalance problem, and a cosine similarity loss to optimize the orientation. We evaluate our approach on two large datasets containing 416 patients with 317 aneurysms using a 5-fold cross-validation scheme. Our method achieves a median localization error of 0.48 mm and a median 3D orientation error of 12.27 \(^\circ \)C, demonstrating an accurate localization of aneurysms and an orientation estimation that comply with clinical practice. Further evaluation is performed in a more classical detection setting to compare with state-of-the-art nnDetecton and nnUNet methods. Competitive performance is reported with an average precision of 76.60%, a sensitivity score of 82.93%, and 0.44 false positives per case. Code and annotations are publicly available at https://gitlab.inria.fr/yassis/DeepAnePose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arimura, H., Li, Q., Korogi, Y., et al.: Automated computerized scheme for detection of unruptured intracranial aneurysms in three-dimensional magnetic resonance angiography1. Acad. Radiol. 11(10), 1093–1104 (2004)

    Article  Google Scholar 

  2. Assis, Y., Liao, L., Pierre, F., Anxionnat, R., Kerrien, E.: An efficient data strategy for the detection of brain aneurysms from mra with deep learning. In: Engelhardt, S., et al. (eds.) DGM4MICCAI/DALI -2021. LNCS, vol. 13003, pp. 226–234. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88210-5_22

    Chapter  Google Scholar 

  3. Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nnDetection: a self-configuring method for medical object detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_51

    Chapter  Google Scholar 

  4. Benner, T., Wisco, J.J., van der Kouwe, A.J., Fischl, B., et al.: Comparison of manual and automatic section positioning of brain MR images. Radiology 239(1), 246–254 (2006)

    Article  Google Scholar 

  5. Bystrov, D., Pekar, V., Young, S., Dries, S.P., Heese, H.S., van Muiswinkel, A.M.: Automated planning of MRI scans of knee joints. In: Medical Imaging 2007: Visualization and Image-Guided Procedures, vol. 6509, pp. 1023–1031. SPIE (2007)

    Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Di Noto, T., Marie, G., Tourbier, S., et al.: Towards automated brain aneurysm detection in TOF-MRA: open data, weak labels, and anatomical knowledge. In: Neuroinformatics pp. 1–14 (2022)

    Google Scholar 

  8. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging 30(9), 1323–1341 (2012). https://slicer.org, pMID: 22770690

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Iskurt, A., Becerikli, Y., Mahmutyazicioglu, K.: Automatic identification of landmarks for standard slice positioning in brain MRI. J. Magn. Reson. Imaging 34(3), 499–510 (2011)

    Article  Google Scholar 

  11. Jang, M., Kim, J., Park, J., et al.: Features of “false positive" unruptured intracranial aneurysms on screening magnetic resonance angiography. PloS one 15(9), e0238597 (2020)

    Google Scholar 

  12. van der Kouwe, A.J., et al.: On-line automatic slice positioning for brain MR imaging. Neuroimage 27(1), 222–230 (2005)

    Article  Google Scholar 

  13. Lall, R., Eddleman, C.S., Bendok, B.R., et al.: Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg. Focus 26(5), E2 (2009)

    Article  Google Scholar 

  14. Lecouvet, F.E., Claus, J., Schmitz, P., Denolin, V., Bos, C., Vande Berg, B.C.: Clinical evaluation of automated scan prescription of knee MR images. J. Magnetic Reson. Imaging Official J. Inter. Soc. Magnetic Reson. Med. 29(1), 141–145 (2009)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Maier-Hein, L., et al.: Metrics reloaded: Pitfalls and recommendations for image analysis validation. arXiv preprint arXiv:2206.01653 (2022)

  17. Miao, S., Lucas, J., Liao, R.: Automatic pose initialization for accurate 2D/3D registration applied to abdominal aortic aneurysm endovascular repair. In: Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 8316, pp. 243–250. SPIE (2012)

    Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. Ieee (2016)

    Google Scholar 

  19. Nakao, T., Hanaoka, S., Nomura, Y., el al.: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. Journal of Magnetic Resonance Imaging 47(4), 948–953 (2018)

    Google Scholar 

  20. Reda, F.A., Zhan, Y., Zhou, X.S.: A Steering engine: learning 3-D anatomy orientation using regression forests. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 612–619. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_73

  21. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  23. Sichtermann, T., Faron, A., Sijben, R., et al.: Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA. Am. J. Neuroradiol. 40(1), 25–32 (2019)

    Article  Google Scholar 

  24. Stember, J.N., Chang, P., Stember, D.M., et al.: Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J. Digit. Imaging 32(5), 808–815 (2019)

    Article  Google Scholar 

  25. Timmins, K.M., van der Schaaf, I.C., Bennink, E., et al.: Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAs: the ADAM challenge. Neuroimage 238, 118216 (2021)

    Article  Google Scholar 

  26. Ueda, D., Yamamoto, A., Nishimori, M., et al.: Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 290(1), 187–194 (2019)

    Article  Google Scholar 

  27. Yang, X., Blezek, D.J., Cheng, L.T., et al.: Computer-aided detection of intracranial aneurysms in MR angiography. J. Digit. Imaging 24(1), 86–95 (2011)

    Article  Google Scholar 

  28. Zhan, Y., Dewan, M., Harder, M., Krishnan, A., Zhou, X.S.: Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection. IEEE Trans. Med. Imaging 30(12), 2087–2100 (2011)

    Article  Google Scholar 

  29. Zeng, K., Zhao, Y., Zhao, Y., et al.: Deep learning solution for medical image localization and orientation detection. Med. Image Anal. 81, 102529 (2022)

    Article  Google Scholar 

  30. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support provided by the Grand-Est Region and the University Hospital (CHRU) of Nancy, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Assis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Assis, Y., Liao, L., Pierre, F., Anxionnat, R., Kerrien, E. (2023). Aneurysm Pose Estimation with Deep Learning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics