Skip to main content

Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

  • 4052 Accesses

Abstract

Deep learning-based segmentation typically requires a large amount of data with dense manual delineation, which is both time-consuming and expensive to obtain for medical images. Consequently, weakly supervised learning, which attempts to utilize sparse annotations such as scribbles for effective training, has garnered considerable attention. However, such scribble-supervision inherently lacks sufficient structural information, leading to two critical challenges: (i) while achieving good performance in overall overlap metrics such as Dice score, the existing methods struggle to perform satisfactory local prediction because no desired structural priors are accessible during training; (ii) the class feature distributions are inevitably less-compact due to sparse and extremely incomplete supervision, leading to poor generalizability. To address these, in this paper, we propose the SC-Net, a new scribble-supervised approach that combines Superpixel-guided scribble walking with Class-wise contrastive regularization. Specifically, the framework is built upon the recent dual-decoder backbone design, where predictions from two slightly different decoders are randomly mixed to provide auxiliary pseudo-label supervision. Besides the sparse and pseudo supervision, the scribbles walk towards unlabeled pixels guided by superpixel connectivity and image content to offer as much dense supervision as possible. Then, the class-wise contrastive regularization disconnects the feature manifolds of different classes to encourage the compactness of class feature distributions. We evaluate our approach on the public cardiac dataset ACDC and demonstrate the superiority of our method compared to recent scribble-supervised and semi-supervised learning methods with similar labeling efforts.

M. Zhou and Z. Xu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Alonso, I., Sabater, A., Ferstl, D., Montesano, L., Murillo, A.C.: Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8219–8228 (2021)

    Google Scholar 

  3. Bernard, O., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Can, Y.B., et al.: Learning to segment medical images with scribble-supervision alone. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 236–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_27

    Chapter  Google Scholar 

  5. Chen, Q., Hong, Y.: Scribble2d5: Weakly-supervised volumetric image segmentation via scribble annotations. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part VIII, pp. 234–243. Springer (2022). https://doi.org/10.1007/978-3-031-16452-1_23

  6. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  7. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems 17 (2004)

    Google Scholar 

  8. Huo, X., et al.: Atso: asynchronous teacher-student optimization for semi-supervised image segmentation. In: CVPR, pp. 1235–1244 (2021)

    Google Scholar 

  9. Kim, B., Ye, J.C.: Mumford-shah loss functional for image segmentation with deep learning. IEEE Trans. Image Process. 29, 1856–1866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  11. Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2

    Chapter  Google Scholar 

  12. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  13. Liu, X.: Weakly supervised segmentation of covid19 infection with scribble annotation on ct images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  14. Luo, X., Chen, J., Song, T., Chen, Y., Wang, G., Zhang, S.: Semi-supervised medical image segmentation through dual-task consistency. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  15. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: Medical Image Computing and Computer Assisted Intervention. pp. 528–538. Springer (2022). https://doi.org/10.1007/978-3-031-16431-6_50

  16. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  17. Mumford, D.B., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. In: Communications on Pure and Applied Mathematics (1989)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Tang, M., Perazzi, F., Djelouah, A., Ayed, I.B., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised CNN segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 524–540. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_31

    Chapter  Google Scholar 

  20. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  21. Valvano, G., Leo, A., Tsaftaris, S.A.: Learning to segment from scribbles using multi-scale adversarial attention gates. IEEE Trans. Med. Imaging 40(8), 1990–2001 (2021)

    Article  Google Scholar 

  22. Verma, V., et al.: Interpolation consistency training for semi-supervised learning. Neural Netw. 145, 90–106 (2022)

    Article  MATH  Google Scholar 

  23. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  24. Wang, G., et al.: A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Trans. Med. Imaging 39(8), 2653–2663 (2020)

    Article  Google Scholar 

  25. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention. Springer (2022). https://doi.org/10.1007/978-3-031-16443-9_4

  26. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  27. Xu, Z., et al.: Anti-interference from noisy labels: mean-teacher-assisted confident learning for medical image segmentation. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  28. Xu, Z., et al.: Noisy labels are treasure: mean-teacher-assisted confident learning for hepatic vessel segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_1

    Chapter  Google Scholar 

  29. Xu, Z., et al.: All-around real label supervision: Cyclic prototype consistency learning for semi-supervised medical image segmentation. IEEE J. Biomed. Health Inform. (2022)

    Google Scholar 

  30. Yi, S., Ma, H., Wang, X., Hu, T., Li, X., Wang, Y.: Weakly-supervised semantic segmentation with superpixel guided local and global consistency. Pattern Recogn. 124, 108504 (2022)

    Article  Google Scholar 

  31. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  32. Zhang, K., Zhuang, X.: Shapepu: a new pu learning framework regularized by global consistency for scribble supervised cardiac segmentation. In: Medical Image Computing and Computer Assisted Intervention, pp. 162–172. Springer (2022). https://doi.org/10.1007/978-3-031-16452-1_16

  33. Zhang, Y., Jiao, R., Liao, Q., Li, D., Zhang, J.: Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation. In: Artificial Intelligence in Medicine, p. 102476 (2022)

    Google Scholar 

  34. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

Download references

Acknowledgement

This research was supported by General Research Fund from Research Grant Council of Hong Kong (No. 14205419).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Xu or Raymond Kai-yu Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, M., Xu, Z., Zhou, K., Tong, R.Ky. (2023). Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics