Skip to main content

Chemical and Biochemical Features of Spinasterol and Schottenol

  • Chapter
  • First Online:
Implication of Oxysterols and Phytosterols in Aging and Human Diseases

Abstract

Phytosterols, which are produced in plants, are structurally similar to cholesterol. Their basic structures consist of a cyclo pentano-perhydrophenanthrene nucleus composed of 3 hexane rings and of a pentane ring with an alkyl side chain. There are around more than 250 phytosterols and related compounds that have been identified in natural resources. Among them, spinasterol and schottenol, its dihydro analog, are often found in seeds, and consequently in seed oils, and in other botanical parts of some plant families such as Sapotaceae, Cactaceae, and Cucurbitaceae. Spinasterol and/or schottenol has been identified in dietary and cosmetic argan oil, milk thistle seed oil, nigella seed oil, and pumkin seed oil. These phytosterols that have several bioactive properties make them potentially attractive molecules in pharmacology. Their chemical and biochemical features are summarized and the analytical methods used to characterize and analyze these compounds are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GC:

Gas chromatography

GC-MS:

Gas chromatography-mass spectrometry

HPLC:

High-performance liquid chromatography

HPLC-UV-DAD:

HPLC-ultra violet-diode array detector.

HPLC-UV-VWD:

HPLC-ultra violet-variable wavelength detector

NMR:

Nuclear magnetic resonance

RP-HPLC:

Reverse-phase HPLC

TMS:

Trimethylsilyl

References

  • Abidi SL (2001) Chromatographic analysis of plant sterols in foods and vegetable oils. J Chromatogr A 935:173–201

    Article  CAS  PubMed  Google Scholar 

  • Ajagbe BO, Othman RA, Myrie SB (2015) Plant sterols, stanols, and sitosterolemia. J AOAC Int 98:716–723

    Article  CAS  PubMed  Google Scholar 

  • Aljohani OS (2022) Phytochemical evaluation of Cucumis Prophetarum: protective effects against carrageenan-induced prostatitis in rats. Drug Chem Toxicol 45:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Arisawa M, Kinghorn AD, Cordell GA, Phoebe CH, Fansworth NR (1985) Plant anticancer agents. Xxxvi schottenol glucoside from baccharis coridifolia and ipomopsis aggregata. Planta Med:544–545

    Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  • Badreddine A, Karym El M, Zarrouk A, Nury T, El Kharrassi Y, Nasser B, Cherkaoui Malki M, Lizard G, Samadi M (2015) An expeditious synthesis of Spinasterol and Schottenol, two phytosterols present in Argan oil and in cactus pear seed oil, and evaluation of their biological activities on cells of the central nervous system. Steroids 99:119–124

    Article  CAS  PubMed  Google Scholar 

  • Balme S, Gülaçar FO (2012) Rapid screening of phytosterols in Orange juice by solid-phase microextraction on polyacrylate fibre derivatisation and gas chromatographic-mass spectrometric. Food Chem 132:613–618

    Article  CAS  PubMed  Google Scholar 

  • Barton DHR, Cox JD (1948) The application of the method of molecular rotation differences to steroids. Part V. Olefinic unsaturation at the 7: 8-position. J Chem Soc (Resumed):1354–1357

    Google Scholar 

  • Beveridge TH, Li TS, Drover JC (2002) Phytosterol content in American ginseng seed oil. J Agric Food Chem 50:744–750

    Article  CAS  PubMed  Google Scholar 

  • Breinhölder P, Mosca L, Lindner W (2002) Concept of sequential analysis of free and conjugated phytosterols in different plant matrices. J Chromatogr B Analyt Technol Biomed Life Sci 777:67–82

    Article  PubMed  Google Scholar 

  • Brooks CJ, Cole WJ, Mcintyre HB, Smith AG (1980) Selective reactions in the analysis and characterization of steroids by gas chromatography-mass spectrometry. Lipids 15:745–755

    Article  CAS  PubMed  Google Scholar 

  • Ceylan FD, Adrar N, Bolling BW, Capanoglu E (2022) Valorisation of hazelnut by-products: current applications and future potential. Biotechnol Genet Eng Rev:1–36

    Google Scholar 

  • Chen Y, She Y, Kaur R, Guo N, Zhang X, Zhang R, Gou X (2019) Is plant sterols a good strategy to lower cholesterol? J Oleo Sci 68:811–816

    Article  CAS  PubMed  Google Scholar 

  • Choudhary SP, Tran LS (2011) Phytosterols: perspectives in human nutrition and clinical therapy. Curr Med Chem 18:4557–4567

    Article  CAS  PubMed  Google Scholar 

  • Da Silva Araújo JR, Silva Morais JG, Santos CM, Araújo Rocha KC, Rios Fagundes A, Fa ESF, Martins FA, De Almeida PM (2021) Phytochemical prospecting, isolation, and protective effect of the Ethanolic extract of the leaves of Jatropha Mollissima (Pohl) Baill. J Toxicol Environ Health A 84:743–760

    Article  PubMed  Google Scholar 

  • De Araújo FF, De Paulo Farias D, Neri-Numa IA, Pastore GM (2021) Underutilized plants of the Cactaceae family: nutritional aspects and technological applications. Food Chem 362:130196

    Article  PubMed  Google Scholar 

  • De Figueiredo LC, Bonafe EG, Martins JG, Martins AF, Maruyama SA, De Oliveira Santos Junior O, Biondo PBF, Matsushita M, Visentainer JV (2018) Development of an ultrasound assisted method for determination of phytosterols in vegetable oil. Food Chem 240:441–447

    Article  PubMed  Google Scholar 

  • Dragoun M, Klausová K, Šimicová P, Honzíková T, Stejskal J, Navrátilová K, Hajšlová J, Bárta J, Bártová V, Jarošová M, Bjelková M, Filip V, Kyselka J (2022) Formation of previously undescribed Δ(7)-Phytosterol oxidation products and Tocopherylquinone adducts in pumpkin seed oil during roasting, screw-pressing, and simulated culinary processing at elevated temperatures. J Agric Food Chem 70:11689–11703

    Article  CAS  PubMed  Google Scholar 

  • El Kharrassi Y, Samadi M, Lopez T, Nury T, El Kebbaj R, Andreoletti P, El Hajj HI, Vamecq J, Moustaid K, Latruffe N, El Kebbaj MS, Masson D, Lizard G, Nasser B, Cherkaoui-Malki M (2014) Biological activities of Schottenol and Spinasterol, two natural Phytosterols present in Argan oil and in cactus pear seed oil, on murine Miroglial Bv2 cells. Biochem Biophys Res Commun 446:798–804

    Article  PubMed  Google Scholar 

  • Esche R, Scholz B, Engel KH (2013) Online Lc-Gc analysis of free sterols/Stanols and intact Steryl/Stanyl esters in cereals. J Agric Food Chem 61:10932–10939

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Bahaa Eldin A, Khalifa I (2022) Valorization and extraction optimization of Prunus seeds for food and functional food applications: a review with further perspectives. Food Chem 388:132955

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Cuesta A, Jan CC, Fernández-Martínez JM, Velasco L (2014) Variability for seed phytosterols in sunflower germplasm. Crop Sci 54:190–197

    Article  Google Scholar 

  • Francavilla M, Colaianna M, Zotti M, Morgese MG, Trotta P, Tucci P, Schiavone S, Cuomo V, Trabace L (2012) Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella Tertiolecta. Curr Med Chem 19:3058–3067

    Article  CAS  PubMed  Google Scholar 

  • Freire CS, Coelho DS, Santos NM, Silvestre AJ, Pascoal Neto C (2005) Identification of Delta7 phytosterols and phytosteryl glucosides in the wood and bark of several acacia species. Lipids 40:317–322

    Article  CAS  PubMed  Google Scholar 

  • Freitas CS, Baggio CH, Dos Santos AC, Mayer B, Twardowschy A, Luiz AP, Marcon R, Soldi C, Pizzolatti MG, Dos Santos EP, Marques MC, Santos AR (2009) Antinociceptive properties of the hydroalcoholic extract, fractions and compounds obtained from the aerial parts of Baccharis Illinita Dc in mice. Basic Clin Pharmacol Toxicol 104:285–292

    Article  CAS  PubMed  Google Scholar 

  • Garg VK, Nes WR (1984) Studies on the C-24 configurations of Δ7-sterols in Theseeds of Cucurbita maxima. Phytochemistry 23:2919–2923

    Article  CAS  Google Scholar 

  • Ghzaiel I, Zarrouk A, Nury T, Libergoli M, Florio F, Hammouda S, Ménétrier F, Avoscan L, Yammine A, Samadi M, Latruffe N, Biressi S, Levy D, Bydlowski SP, Hammami S, Vejux A, Hammami M, Lizard G (2021) Antioxidant properties and cytoprotective effect of Pistacia Lentiscus L. seed oil against 7β-hydroxycholesterol-induced toxicity in C2c12 myoblasts: reduction in oxidative stress, mitochondrial and peroxisomal dysfunctions and attenuation of cell death. Antioxidants (Basel) 10

    Google Scholar 

  • Grille S, Zaslawski A, Thiele S, Plat J, Warnecke D (2010) The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals. Prog Lipid Res 49:262–288

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M-A, Benveniste P (1987) Plant membrane sterols: isolation, identification, and biosynthesis. Methods in enzymology. Academic Press

    Google Scholar 

  • Harvey DJ, Vouros P (2020) Mass spectrometric fragmentation of trimethylsilyl and related alkylsilyl derivatives. Mass Spectrom Rev 39:105–211

    Article  CAS  PubMed  Google Scholar 

  • Jun X (2013) High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit Rev Food Sci Nutr 53:837–852

    Article  CAS  PubMed  Google Scholar 

  • Junker J, Chong I, Kamp F, Steiner H, Giera M, Müller C, Bracher F (2019) Comparison of strategies for the determination of sterol sulfates via Gc-Ms leading to a novel deconjugation-derivatization protocol. Molecules 24

    Google Scholar 

  • Kamal-Eldin A, Määttä K, Toivo J, Lampi AM, Piironen V (1998) Acid-catalyzed isomerization of fucosterol and Delta5-avenasterol. Lipids 33:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Khallouki F, Younos C, Soulimani R, Oster T, Charrouf Z, Spiegelhalder B, Bartsch H, Owen RW (2003) Consumption of Argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects. Eur J Cancer Prev 12:67–75

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Sato N, Hatano A, Ogura H (1990) Sterol glucosides from Prunella Vulgaris. Phytochemistry 29:2351–2355

    Article  CAS  Google Scholar 

  • Kovacheva E, Ganchev G, Neicheva A, Ivanova I, Konoushlieva M, Andreev V (1990) Gas chromatographic determination of sterols in fat-soluble concentrates obtained from plant materials. J Chromatogr A 509:79–84

    Article  CAS  Google Scholar 

  • Lam DT, Le VTT, Quan PM, Minh PTH, Thuy TTT, Anh NTN, Tai BH, Kiem PV (2021) Two new terpenoids from the leaves of Callicarpa Macrophylla. Nat Prod Res 35:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Levasseur W, Perré P, Pozzobon V (2020) A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 41:107545

    Article  CAS  PubMed  Google Scholar 

  • Lizard G (2008) Phytosterols: to be or not to be toxic; that is the question. Br J Nutr 100:1150–1151

    Article  CAS  PubMed  Google Scholar 

  • Määttä K, Lampi A-M, Petterson J, Fogelfors BM, Piironen V, Kamal-Eldin A (1999) Phytosterol content in seven oat cultivars grown at three locations in Sweden. J Sci Food Agric 79:1021–1027

    Article  Google Scholar 

  • Makhmudova U, Schulze PC, Lütjohann D, Weingärtner O (2021) Phytosterols and cardiovascular disease. Curr Atheroscler Rep 23:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Meddeb W, Rezig L, Zarrouk A, Nury T, Vejux A, Prost M, Bretillon L, Mejri M, Lizard G (2018) Cytoprotective activities of Milk thistle seed oil used in traditional Tunisian medicine on 7-Ketocholesterol and 24s-hydroxycholesterol-induced toxicity on 158n murine oligodendrocytes. Antioxidants (Basel) 7

    Google Scholar 

  • Mohamed HMA, Awatif II (1998) The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem 62:269–276

    Article  CAS  Google Scholar 

  • Montesano D, Blasi F, Simonetti MS, Santini A, Cossignani L (2018) Chemical and nutritional characterization of seed oil from Cucurbita Maxima L. (Var. Berrettina) pumpkin. Foods 7

    Google Scholar 

  • Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  CAS  PubMed  Google Scholar 

  • Moreau RA, Powell MJ, Singh V (2003) Pressurized liquid extraction of polar and nonpolar lipids in corn and oats with hexane, methylene chloride, isopropanol, and ethanol. J Am Oil Chem Soc 80:1063–1067

    Article  CAS  Google Scholar 

  • Moreau RA, Nyström L, Whitaker BD, Winkler-Moser JK, Baer DJ, Gebauer SK, Hicks KB (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61

    Article  CAS  PubMed  Google Scholar 

  • Münger LH, Nyström L (2014) Enzymatic hydrolysis of steryl glycosides for their analysis in foods. Food Chem 163:202–211

    Article  PubMed  Google Scholar 

  • Münger LH, Boulos S, Nyström L (2018) Uplc-Ms/Ms based identification of dietary Steryl glucosides by investigation of corresponding free sterols. Front Chem 6:342

    Article  PubMed  PubMed Central  Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyström L, Schär A, Lampi A-M (2012) Steryl glycosides and acylated steryl glycosides in plant foods reflect unique sterol patterns. Eur J Lipid Sci Technol 114:656–669

    Article  Google Scholar 

  • Oliveira L, Freire CSR, Silvestre AJD, Cordeiro N, Torres IC, Evtuguin D (2005) Steryl glucosides from Banana plant Musa Acuminata Colla Var Cavendish. Ind Crop Prod 22:187–192

    Article  CAS  Google Scholar 

  • Phillips KM, Ruggio DM, Ashraf-Khorassani M (2005) Analysis of steryl glucosides in foods and dietary supplements by solid-phase extraction and gas chromatography. J Food Lipids 12:124–140

    Article  CAS  Google Scholar 

  • Plat J, Baumgartner S, Mensink RP (2015) Mechanisms underlying the health benefits of plant sterol and Stanol ester consumption. J AOAC Int 98:697–700

    Article  CAS  PubMed  Google Scholar 

  • Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins KL, Burrin DG, Guthrie G, Thijs C, Te Velde AA, Vreugdenhil ACE, Sverdlov R, Garssen J, Wouters K, Trautwein EA, Wolfs TG, Van Gorp C, Mulder MT, Riksen NP, Groen AK, Mensink RP (2019) Plant-based sterols and Stanols in health & disease: “Consequences Of Human Development In A Plant-Based Environment?”. Prog Lipid Res 74:87–102

    Article  CAS  PubMed  Google Scholar 

  • Rezig L, Martine L, Nury T, Msaada K, Mahfoudhi N, Ghzaiel I, Prost-Camus E, Durand P, Midaoui AE, Acar N, Latruffe N, Vejux A, Lizard G (2022) Profiles of fatty acids, polyphenols, sterols, and tocopherols and scavenging property of Mediterranean oils: new sources of dietary nutrients for the prevention of age-related diseases. J Oleo Sci 71:1117–1133

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JB, Gros EG, Bertoni MH, Cattaneo P (1996) The sterols of Cucurbita Moschata (“Calabacita”) seed oil. Lipids 31:1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Roiaini M, Seyed H, Jinap S, Norhayati H (2016) Effect of extraction methods on yield, oxidative value, phytosterols and antioxidant content of cocoa butter. Int Food Res J 23:47–54

    CAS  Google Scholar 

  • Rozentsvet OA, Kotlova ER, Bogdanova ES, Nesterov VN, Senik SV, Shavarda AL (2022) Balance of Δ(5)-and Δ(7)-sterols and Stanols in halophytes in connection with salinity tolerance. Phytochemistry 198:113156

    Article  CAS  PubMed  Google Scholar 

  • Schlag S, Götz S, Rüttler F, Schmöckel SM, Vetter W (2022) Quantitation of 20 phytosterols in 34 different accessions of quinoa (Chenopodium Quinoa). J Agric Food Chem 70:9856–9864

    Article  CAS  PubMed  Google Scholar 

  • Strobl M (2004) Delta-7-sterole und delta-7-sterolglykoside Aus Samen Von Cucurbita Pepo L.

    Google Scholar 

  • Thotathil V, Rizk HH, Fakrooh A, Sreerama L (2022) Phytochemical analysis of Acaciaehrenbergiana (Hayne) grown in Qatar: identification of active ingredients and their biological activities. Molecules 27

    Google Scholar 

  • Uddin MS, Sarker MZ, Ferdosh S, Akanda MJ, Easmin MS, Bt Shamsudin SH, Bin Yunus K (2015) Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review. J Sci Food Agric 95:1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Vejux A, Montange T, Martine L, Zarrouk A, Riedinger JM, Lizard G (2012) Absence of oxysterol-like side effects in human monocytic cells treated with phytosterols and oxyphytosterols. J Agric Food Chem 60:4060–4066

    Article  CAS  PubMed  Google Scholar 

  • Wang GK, Wang Z, Yu Y, Zhang N, Zhou ZY, Wang G, Liu JS (2018) A new sesquiterpene from Kalimeris Integrifolia. Nat Prod Res 32:1004–1009

    Article  PubMed  Google Scholar 

  • Winkler JK, Rennick KA, Eller FJ, Vaughn SF (2007) Phytosterol and tocopherol components in extracts of corn Distiller’s dried grain. J Agric Food Chem 55:6482–6486

    Article  CAS  PubMed  Google Scholar 

  • Xiao X-H, Yuan Z-Q, Li G-K (2013) Preparation of phytosterols and phytol from edible marine algae by microwave-assisted extraction and high-speed counter-current chromatography. Sep Purif Technol 104:284–289

    Article  CAS  Google Scholar 

  • Yang Y, Lai Q, Wang C, Zhou G (2022) Protective effects of Herba Houttuyniae aqueous extract against ova-induced airway Hyperresponsiveness and inflammation in asthmatic mice. Evid Based Complement Alternat Med 2022:7609785

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarrouk A, Martine L, Grégoire S, Nury T, Meddeb W, Camus E, Badreddine A, Durand P, Namsi A, Yammine A, Nasser B, Mejri M, Bretillon L, Mackrill JJ, Cherkaoui-Malki M, Hammami M, Lizard G (2019) Profile of fatty acids, tocopherols, Phytosterols and polyphenols in Mediterranean oils (Argan oils, olive oils, Milk thistle seed oils and nigella seed oil) and evaluation of their antioxidant and cytoprotective activities. Curr Pharm Des 25:1791–1805

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cambrai A, Miesch M, Roussi S, Raul F, Aoude-Werner D, Marchioni E (2006) Separation of Δ5- and Δ7-phytosterols by adsorption chromatography and semipreparative reversed phase high-performance liquid chromatography for quantitative analysis of phytosterols in foods. J Agric Food Chem 54:1196–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Lizard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khallouki, F. et al. (2024). Chemical and Biochemical Features of Spinasterol and Schottenol. In: Lizard, G. (eds) Implication of Oxysterols and Phytosterols in Aging and Human Diseases. Advances in Experimental Medicine and Biology, vol 1440. Springer, Cham. https://doi.org/10.1007/978-3-031-43883-7_3

Download citation

Publish with us

Policies and ethics