Skip to main content

Automated Property-Based Testing from AADL Component Contracts

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14290))

Abstract

Effective and scalable quality assurance techniques are essential for realizing formal model-based development techniques for high-assurance systems. In this paper, we present the GUMBOX property-based testing framework for the SAE standard Architecture and Analysis Definition Language (AADL) integrated with HAMR AADL code generation tool chain. In GUMBOX, automated testing infrastructure for AADL component application code is automatically generated from AADL models and formal specifications written in the GUMBO contract language. This testing framework complements our previous work on using code-level symbolic execution to verify that component source code conforms to model-level GUMBO contracts, and it allows developers to switch between using testing and formal verification with specifications derived from a common contract language. We describe how the GUMBOX framework is incorporated in continuous integration infrastructure with parallel and distributed execution of tests in industrial workflows.

This work is supported in part by the U.S. Army Combat Capabilities Development Command, Aviation and Missile Center under Contract No.W911W6-20-C-2020 and the U.S. Defense Advanced Research Projects Agency (DARPA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As with any testing/code-level formal method, I/O and interactions with physical devices or stateful services may need to be supported by manually crafted stubs.

References

  1. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

    Chapter  Google Scholar 

  2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  3. Belt, J., Hatcliff, J., Robby, Chalin, P., Hardin, D., Deng, X.: Bakar kiasan: flexible contract checking for critical systems using symbolic execution. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 58–72. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_6

  4. Belt, J., et al.: Model-driven development for the seL4 microkernel using the HAMR framework. J. Syst. Archit. (2022)

    Google Scholar 

  5. Borde, E., Rahmoun, S., Cadoret, F., Pautet, L., Singhoff, F., Dissaux, P.: Architecture models refinement for fine grain timing analysis of embedded systems. In: 2014 25nd IEEE International Symposium on Rapid System Prototyping, pp. 44–50 (2014)

    Google Scholar 

  6. Burdy, L., et al.: An overview of JML tools and applications. Int. J. Softw. Tools Technol. Transf. 7(3), 212–232 (2005)

    Article  Google Scholar 

  7. C, S.A.R.: Architecture analysis and design language (AADL) (2017)

    Google Scholar 

  8. Cadoret, F., Borde, E., Gardoll, S., Pautet, L.: Design patterns for rule-based refinement of safety critical embedded systems models. In: 2012 IEEE 17th International Conference on Engineering of Complex Computer Systems, pp. 67–76. IEEE (2012)

    Google Scholar 

  9. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the JML and JUNIT way. In: ECOOP 2002 – Object-Oriented Programming, pp. 231–255 (2002)

    Google Scholar 

  10. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming, pp. 268–279 (2000)

    Google Scholar 

  11. Cofer, D.D., et al.: Cyberassured systems engineering at scale. IEEE Secur. Priv. 20(3), 52–64 (2022)

    Google Scholar 

  12. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compositional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_13

    Chapter  Google Scholar 

  13. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-ergo 2.2. In: SMT Workshop: International Workshop on Satisfiability Modulo Theories (2018)

    Google Scholar 

  14. Deng, X., Robby, Hatcliff, J.: Kiasan: a verification and test-case generation framework for java based on symbolic execution. In: Leveraging Applications of Formal Methods, Second International Symposium, ISoLA 2006, Paphos, Cyprus, 15–19 November 2006, pp. 137 (2006)

    Google Scholar 

  15. Deng, X., Robby, Hatcliff, J.: Kiasan/kunit: automatic test case generation and analysis feedback for open object-oriented systems. In: Testing: Academic and Industrial Conference Practice and Research Techniques (TAICPART 2007) (2007)

    Google Scholar 

  16. Dong, Y.W., Wang, G., Zhao, H.B.: A model-based testing for AADL model of embedded software. In: 2009 Ninth International Conference on Quality Software, pp. 185–190 (2009)

    Google Scholar 

  17. Fähndrich, M.: Static verification for code contracts. In: Static Analysis, pp. 2–5 (2010)

    Google Scholar 

  18. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis and Design Language. Addison-Wesley, Boston (2013)

    Google Scholar 

  19. Fisher, K., Launchbury, J., Richards, R.: The HACMS program: using formal methods to eliminate exploitable bugs. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 375(2104) (2017)

    Google Scholar 

  20. Godefroid, P.: Test generation using symbolic execution. In: Foundations of Software Technology and Theoretical Computer Science (2012)

    Google Scholar 

  21. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 213–223 (2005)

    Google Scholar 

  22. GUMBOX property-based testing case studies (2023). https://github.com/santoslab/gumbox-case-studies

  23. HAMR project website (2022). https://hamr.sireum.org

  24. HARDENS: high assurance rigorous digital engineering for nuclear safety (artifacts repository). https://github.com/GaloisInc/HARDENS

  25. Hatcliff, J., Belt, J., Robby, Carpenter, T.: HAMR: an AADL multi-platform code generation toolset. In: Margaria, T., Steffen, B. (eds.) ISoLA 2021. LNCS, vol. 13036, pp. 274–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89159-6_18

    Chapter  Google Scholar 

  26. Hatcliff, J., Hugues, J., Stewart, D., Wrage, L.: Formalization of the AADL run-time services. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13702, pp. 105–134. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19756-7_7

    Chapter  Google Scholar 

  27. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral interface specification languages. ACM Comput. Surv. 44(3) (2012)

    Google Scholar 

  28. Hatcliff, J., Stewart, D., Belt, J., Robby, Schwerdfeger, A.: An AADL contract language supporting integrated model- and code-level verification. In: Proceedings of the 2022 ACM Workshop on High Integrity Language Technology. HILT ’22 (2022)

    Google Scholar 

  29. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove. Int. J. Softw. Tools Technol. Transf. 17(6) (2015)

    Google Scholar 

  30. Hugues, J., Wrage, L., Hatcliff, J., Stewart, D.: Mechanization of a large DSML: an experiment with AADL and coq. In: 20th ACM-IEEE International Conference on Formal Methods and Models for System Design, MEMOCODE 2022, Shanghai, China, 13–14 October 2022, pp. 1–9. IEEE (2022)

    Google Scholar 

  31. Johnsen, A., Pettersson, P., Lundqvist, K.: An architecture-based verification technique for AADL specifications. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 105–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23798-0_11

    Chapter  Google Scholar 

  32. Kanig, J.: Leading-edge ADA verification technologies: combining testing and verification with gnattest and gnatprove - the hi-lite project. In: Proceedings of the 2012 ACM Conference on High Integrity Language Technology, HILT ’12, 2–6 December 2012, Boston, Massachusetts, USA, pp. 5–6. ACM (2012)

    Google Scholar 

  33. Kline, S., Hudak, J., O’Neill, A.: Automated test and re-test for AADL (SBIR project between Innovative Defense Technologies and the Software Engineering Institute) (2022). https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=651952

  34. Larson, B.R., Chalin, P., Hatcliff, J.: BLESS: formal specification and verification of behaviors for embedded systems with software. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 276–290. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_19

    Chapter  Google Scholar 

  35. Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: Ocarina: an environment for AADL models analysis and automatic code generation for high integrity applications. In: Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 237–250. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01924-1_17

    Chapter  Google Scholar 

  36. Lempia, D., Miller, S.: DOT/FAA/AR-08/32. Requirements Engineering Management Handbook, Federal Aviation Administration (2009)

    Google Scholar 

  37. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: CompCert-a formally verified optimizing compiler. In: ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress (2016)

    Google Scholar 

  38. Sireum logika (2022). https://logika.sireum.org

  39. Meyer, B.: Eiffel as a framework for verification. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 301–307. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69149-5_32

    Chapter  Google Scholar 

  40. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  41. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or formal verification: DO-178C alternatives and industrial experience. IEEE Softw. 30(3), 50–57 (2013)

    Article  Google Scholar 

  42. Nilsson, R.: ScalaCheck: The Definitive Guide. Artima Press, Walnut Creek (2014)

    Google Scholar 

  43. Robby, Hatcliff, J.: Slang: the Sireum programming language. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation - ISoLA 2021. Lecture Notes in Computer Science, vol. 13036, pp. 253–273. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89159-6_17

    Chapter  Google Scholar 

  44. sel4 microkernel (2015). sel4.systems/

    Google Scholar 

  45. Stewart, D., Liu, J.J., Cofer, D., Heimdahl, M., Whalen, M.W., Peterson, M.: AADL-based safety analysis using formal methods applied to aircraft digital systems. Reliab. Eng. Syst. Saf. 213, 107649 (2021)

    Article  Google Scholar 

  46. Ward, D.T., Helton, S.B.: Estimating return on investment for SAVI (a model-based virtual integration process. SAE International J. Aerosp. (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hatcliff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatcliff, J., Belt, J., Robby, Legg, J., Stewart, D., Carpenter, T. (2023). Automated Property-Based Testing from AADL Component Contracts. In: Cimatti, A., Titolo, L. (eds) Formal Methods for Industrial Critical Systems. FMICS 2023. Lecture Notes in Computer Science, vol 14290. Springer, Cham. https://doi.org/10.1007/978-3-031-43681-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43681-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43680-2

  • Online ISBN: 978-3-031-43681-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics