Skip to main content

Recovery of Metals from Leach Liquors: Biosorption versus Metal Sulfide Precipitation

  • Chapter
  • First Online:
Biotechnological Innovations in the Mineral-Metal Industry

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 171 Accesses

Abstract

Extraction of metals (leaching) is chemical or biochemical processes that utilize acids or microorganisms to enhance the suspension of metals from the primary and secondary sources by making them more amenable to dissolution in aqueous solutions (leachate). Recovery of metals from the leachates is an essential stage supported by additional purification processes such as precipitation of impurities, electrowinning, solvent extraction, chemical or biological adsorption, and ion exchange. In this study, especially biosorption and metal sulfide precipitation are overviewed and discussed. Biosorption is a process by which particular biomass such as bacteria, fungi, yeast, agricultural wastes, algae, and biowastes can able to bind with specific ions or other molecules from aqueous solutions. Metal sulfide precipitation can be highly effective in obtaining a high degree of separation of metal cations from complex leachates. Each of these techniques has advantages and drawbacks. Sometimes, a technique may not be effective in attaining higher metal recovery. Therefore, different recovery techniques are needed to recover the target elements from the complex leachates. Maybe a combination of two or three recovery techniques is required to recover metals from complex leachates. Additionally, the research activity highlighted that metal sulfide precipitation and biosorption processes have to limit factors that could hinder the process scale-up. Thus, more research is needed to evaluate the environmental impacts of metal recovery from leach liquors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71–79.

    CAS  Google Scholar 

  • Bin, H. U., Yang, T. Z., Liu, W. F., Zhang, D. C., & Lin, C. H. E. N. (2019). Removal of arsenic from acid wastewater via sulfide precipitation and its hydrothermal mineralization stabilization. Transactions of Nonferrous Metals Society of China, 29(11), 2411–2421.

    Google Scholar 

  • Birungi, Z. S., & Chirwa, E. M. N. (2014). The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: Comparative analysis. Bioresource Technology, 160, 43–51.

    Article  CAS  Google Scholar 

  • Cai, X., Kong, L., Hu, X., & Peng, X. (2021). Recovery of Re (VII) from strongly acidic wastewater using sulphide: Acceleration by UV irradiation and the underlying mechanism. Journal of Hazardous Materials, 416, 126233.

    Article  CAS  Google Scholar 

  • Chassary, P., Vincent, T., Marcano, J. S., Macaskie, L. E., & Guibal, E. (2005). Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 76(1), 131–147.

    Article  CAS  Google Scholar 

  • Chen, C., Wen, D., & Wang, J. (2014). Cellular surface characteristics of Saccharomyces cerevisiae before and after Ag (I) biosorption. Bioresource Technology, 156, 380–383.

    Article  CAS  Google Scholar 

  • Choubey, P. K., Dinkar, O. S., Panda, R., Kumari, A., Jha, M. K., & Pathak, D. D. (2021). Selective extraction and separation of Li, Co and Mn from leach liquor of discarded lithium ion batteries (LIBs). Waste Management, 121, 452–457.

    Article  CAS  Google Scholar 

  • Das, N. (2010). Recovery of precious metals through biosorption—a review. Hydrometallurgy, 103(1), 180–189. https://doi.org/10.1016/j.hydromet.2010.03.016

    Article  CAS  Google Scholar 

  • Das, N., & Das, D. (2013). Recovery of rare earth metals through biosorption: An overview. Journal of Rare Earths, 31(10), 933–943.

    Article  CAS  Google Scholar 

  • Deng, Z., Oraby, E. A., & Eksteen, J. J. (2019). The sulfide precipitation behaviour of Cu and Au from their aqueous alkaline glycinate and cyanide complexes. Separation and Purification Technology, 218, 181–190.

    Article  CAS  Google Scholar 

  • Diniz, V., & Volesky, B. (2005). Biosorption of La, Eu and Yb using Sargassum biomass. Water Research, 39(1), 239–247.

    Article  CAS  Google Scholar 

  • Donia, A. M., Atia, A. A., & Elwakeel, K. Z. (2007). Recovery of gold (III) and silver (I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 87(3), 197–206.

    Article  CAS  Google Scholar 

  • Estay, H., Barros, L., & Troncoso, E. (2021). Metal sulfide precipita-tion: Recent breakthroughs and future outlooks. Minerals, 11(12), 1385.

    Google Scholar 

  • Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Fu, F., Zeng, H., Cai, Q., Qiu, R., Yu, J., & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere, 69, 1783–1789.

    Article  CAS  Google Scholar 

  • Fujiwara, K., Ramesh, A., Maki, T., Hasegawa, H., & Ueda, K. (2007). Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions on l-lysine modified crosslinked chitosan resin. Journal of Hazardous Materials, 146(1), 39–50.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (1993). Interactions of fungip with toxic metals. New Phytologist, 124(1), 25–60.

    Article  CAS  Google Scholar 

  • Gadd, G. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.

    Article  CAS  Google Scholar 

  • Gao, X., Zhang, Y., & Zhao, Y. (2017). Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate. Carbohydrate Polymers, 159, 108–115.

    Article  CAS  Google Scholar 

  • Gharabaghi, M., Irannajad, M., & Azadmehr, A. R. (2012). Selective sulphide precipitation of heavy metals from acidic polymetallic aqueous solution by thioacetamide. Industrial and Engineering Chemistry Research, 51(2), 954–963.

    Article  Google Scholar 

  • Gupta, C. K. (2006). Chemical metallurgy: Principles and practice. John Wiley & Sons.

    Google Scholar 

  • Hassanien, W. A. G., Desouky, O. A. N., & Hussien, S. S. E. (2014). Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak Journal of Science and Technology (WJST), 11(9), 809–823.

    Google Scholar 

  • Hadjittofi, L., Charalambous, S., & Pashalidis, I. (2016). Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres. Journal of Rare Earths, 34(1), 99–104.

    Google Scholar 

  • Hedrich, S., Joulian, C., Graupner, T., Schippers, A., & Guézennec, A.-G. (2018). Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching. Hydrometallurgy, 179, 125–131.

    Article  CAS  Google Scholar 

  • Heilmann, M., Jurkowski, W., Buchholz, R., Brueck, T., & Becker, A. M. (2015). Biosorption of neodymium by selected photoautotrophic and heterotrophic species. Journal of Chemical Engineering and Process Technology, 6(4), 1.

    Google Scholar 

  • Hong, T., Zheng, T., Liu, M., Mumford, K. A., & Stevens, G. W. (2020). Investigation on the recovery of rhenium in the high arsenite wash acid solution from the copper smelting process using reducing sulfide precipitation method. Hydrometallurgy, 195, 105402.

    Article  CAS  Google Scholar 

  • Hussien, S. S. (2014). Biosorption lanthanum pleurotus ostreatus basidiocarp. International Journal of Biomedical Research, 2, 26–36.

    Google Scholar 

  • Işıldar, A., van Hullebusch, E. D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M. A., & Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)–A review. Journal of Hazardous Materials, 362, 467–481.

    Article  Google Scholar 

  • Kucuker, M. A. (2018). Biomining concept for recovery of rare earth elements (REEs) from secondary sources. Hamburger Berichte; Bd. 48; Verlag Abfall aktuell der Ingenieurgruppe RUK GmbH, Stuttgart, ISBN 978-3-9817572-8-6.

    Google Scholar 

  • Kucuker, M. A., & Kuchta, K. (2012). Biosorption with Algae as a green technology for recovery of rare earth metals from E-waste (pp.4–6). Presented at the International conference on Recycling and Reuse.

    Google Scholar 

  • Kucuker, M. A., & Kuchta, K. (2018). Biomining–biotechnological systems for the extraction and recovery of metals from secondary sources. Global Nest Journal, 20, 737–742.

    Article  CAS  Google Scholar 

  • Kucuker, M. A., Nadal, J. B., & Kuchta, K. (2016). Comparison between batch and continuous reactor systems for biosorption of neodymium (Nd) using microalgae. International Journal of Plant, Animal and Environmental Sciences, 6, 197–203.

    Google Scholar 

  • Kucuker, M. A., Wieczorek, N., Kuchta, K., & Copty, N. K. (2017). Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets. PLoS ONE, 12(4), e0175255.

    Article  Google Scholar 

  • Kumar, M., Nandi, M., & Pakshirajan, K. (2021). Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. Journal of environmental management, 278, 111555.

    Google Scholar 

  • Kwak, H. W., Yang, Y. S., Kim, M. K., Lee, J. Y., Yun, H., Kim, M. H., & Lee, K. H. (2013). Chromium (VI) adsorption behavior of silk sericin beads. International Journal of Industrial Entomology, 26(1), 47–53.

    Google Scholar 

  • Lee, C. H., Chen, Y. J., Liao, C. H., Popuri, S. R., Tsai, S. L., & Hung, C. E. (2013). Selective leaching process for neodymium recovery from scrap Nd-Fe-B magnet. Metallurgical and Materials Transactions A, 44(13), 5825–5833.

    Article  CAS  Google Scholar 

  • Lewis, A. E. (2010). Review of metal sulfide precipitation. Hydrometallurgy, 104, 222–234.

    Article  CAS  Google Scholar 

  • Lewis, A., & van Hille, R. (2006). An exploration into the sulphide precipitation method and its effect on metal sulphide removal. Hydrometallurgy, 81(3), 197–204.

    Article  CAS  Google Scholar 

  • Li, L., Hu, Q., Zang, J. H., Qi, H. Y., & Zhuang, G. Q. (2011). Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. Journal of Environmental Sciences, 23(1), 108–111.

    Article  CAS  Google Scholar 

  • Li, H., Oraby, E., & Eksteen, J. (2021). Recovery of copper and the deportment of other base metals from alkaline glycine leachates derived from waste printed circuit boards (WPCBs). Hydrometallurgy, 199, 105540.

    Article  CAS  Google Scholar 

  • Liu, R., Yang, Z., He, Z., Wu, L., Hu, C., Wu, W., & Qu, J. (2016). Treatment of strongly acidic wastewater with high arsenic concentrations by ferrous sulfide (FeS): Inhibitive effects of S (0)-enriched surfaces. Chemical Engineering Journal, 304, 986–992.

    Article  CAS  Google Scholar 

  • Ma, H. W., Liao, X. P., Liu, X., & Shi, B. (2006). Recovery of platinum (IV) and palladium (II) by bayberry tannin immobilized collagen fibre membrane from water solution. Journal of Membrane Science, 278(1), 373–380.

    Article  CAS  Google Scholar 

  • Macingova, E., & Luptakova, A. (2012). Recovery of metals from acid mine drainage. Chemical Engineering, 28, 109–114.

    Google Scholar 

  • Manahan, S. E. (1990). Hazardous waste chemistry, toxicology, and treatment. CRC Press.

    Google Scholar 

  • Mao, Y., Hu, H., & Yan, Y. (2011). Biosorption of cesium (I) from aqueous solution by a novel exopolymers secreted from Pseudomonas fluorescens C-2: Equilibrium and kinetic studies. Journal of Environmental Sciences, 23(7), 1104–1112.

    Article  CAS  Google Scholar 

  • Marra, A. (2017). Innovative treatments for resource recovery from waste electrical and electronic equipment (PhD thesis), Università degli Studi di Salerno, Italy.

    Google Scholar 

  • Mata, Y. N., Torres, E., Blazquez, M. L., Ballester, A., González, F. M. J. A., & Munoz, J. A. (2009). Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 166(2), 612–618.

    Article  CAS  Google Scholar 

  • Michalak, I., Chojnacka, C., & Witek-Krowiak, A. (2013). State of the art for the biosorption process—A review. Applied Biochemistry and Biotechnology, 170(6), 1389–1416.

    Article  CAS  Google Scholar 

  • Migdisov, A. A., Williams-Jones, A. E., Lakshtanov, L. Z., & Alekhin, Y. V. (2002). Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur. Geochimica Et Cosmochimica Acta, 66(10), 1713–1725.

    Article  CAS  Google Scholar 

  • Mokone, T. P., Van Hille, R. P., & Lewis, A. E. (2009). Mechanisms responsible for particle formation during metal sulphide precipitation processes. Water institute of Southern Africa and international mine water association. Pretoria.

    Google Scholar 

  • Muñoz, A. J., Espínola, F., & Ruiz, E. (2017). Biosorption of Ag (I) from aqueous solutions by Klebsiella sp. 3S1. Journal of Hazardous Materials, 329, 166–177.

    Article  Google Scholar 

  • Oliveira, R. C., & Garcia, O. (2009). Study of biosorption of rare earth metals (La, Nd, Eu, Gd) by Sargassum sp. biomass in batch systems: Physicochemical evaluation of kinetics and adsorption models. In Advanced materials research (Vol. 71, pp. 605–608). Trans Tech Publications.

    Google Scholar 

  • Oliveira, R. C., Jouannin, C., Guibal, E., & Garcia, O. (2011). Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study. Process biochemistry, 46(3), 736–744.

    Google Scholar 

  • Panda, S., Costa, R. B., Shah, S. S., Mishra, S., Bevilaqua, D., & Akcil, A. (2021). Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)–A review. Resources, Conservation and Recycling, 171, 105645.

    Article  CAS  Google Scholar 

  • Panda, S., Parhi, P. K., Pradhan, N., Mohapatra, U. B., Sukla, L. B., & Park, K. H. (2012) Extraction of copper from bacterial leach liquor of a low grade chalcopyrite test heap using LIX 984N-C”. Hydrometallurgy (Elsevier) (Vol. 121–124, pp. 116–119). https://doi.org/10.1016/j.hydromet.2012.03.008

  • Pohl, A. (2020). Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air, and Soil Pollution, 231(10), 1–17.

    Article  Google Scholar 

  • Prodromou, M., & Pashalidis, I. (2016). Europium adsorption by non-treated and chemically modified opuntia ficus indica cactus fibres in aqueous solutions. Desalination and Water Treatment, 57(11), 5079–5088.

    Article  CAS  Google Scholar 

  • Robalds, A., Naja, G. M., & Klavins, M. (2016). Highlighting inconsistencies regarding metal biosorption. Journal of Hazardous Materials, 304, 553–556.

    Article  CAS  Google Scholar 

  • Sahan, M., Kucuker, M. A., Demirel, B., Kuchta, K., & Hursthouse, A. (2019). Determination of metal content of waste mobile phones and estimation of their recovery potential in Turkey. International Journal of Environmental Research and Public Health, 16(5), 887.

    Article  CAS  Google Scholar 

  • Sari, A., Mendil, D., Tuzen, M., & Soylak, M. (2009). Biosorption of palladium (II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 162(2), 874–879.

    Article  CAS  Google Scholar 

  • Sert, S., Kütahyali, C., Inan, S., Talip, Z., Cetinkaya, B., & Eral, M. (2008). Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy, 90(1), 13–18.

    Article  CAS  Google Scholar 

  • Sethurajan, M. (2016). Metallurgical sludges, bio/leaching and heavy metals recovery (Zn, Cu) (Doctoral dissertation, Paris Est).

    Google Scholar 

  • Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., Leal, J. P., Gasche, T. A., Kucuker, M. A., Kuchta, K., Neto, I. F. F., Soares, H. M. V. M., & Neto, A. I. F. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Critical Reviews in Environmental Science and Technology, 1–64.

    Google Scholar 

  • Talaro, K. P., & Talaro, A. (2002). Physical and chemical control of microbes. In Foundations in Microbiology (pp. 325–326). U.S. Mineral Commodity Summaries (2015).

    Google Scholar 

  • Tewari, N., Vasudevan, P., & Guha, B. K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal, 23(2), 185–192.

    Article  CAS  Google Scholar 

  • Thomas, M., Białecka, B., & Zdebik, D. (2014). Sources of copper ions and selected methods of their removal from wastewater from the printed circuits board production. Inzynieria Ekologiczna, 37, 31–49.

    Google Scholar 

  • Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., & Khosravi, A. (2015). Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: Equilibrium, kinetic and thermodynamic studies. Research on Chemical Intermediates, 41(2), 559–573.

    Article  CAS  Google Scholar 

  • Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 25(1), 28–37. https://doi.org/10.1016/j.mineng.2011.09.019

    Article  CAS  Google Scholar 

  • Uçar, D. (2017). Sequential precipitation of heavy metals using sulfide-laden bioreactor effluent in a pH controlled system. Mineral Processing and Extractive Metallurgy Review, 38(3), 162–167.

    Article  Google Scholar 

  • Varsihini, C. J. S., Das, D., Das, N. (2014). Optimization of parameters for Cerium(III) biosorption onto biowaste materials of animal and plant origin using 5- level Box–Behnken design: equilibrium, kinetic, thermodynamic and regeneration studies. Journal of Rare Earths, 32(8), 745–758.

    Google Scholar 

  • Vemic, M., Bordas, F., Comte, S., Guibaud, G., Lens, P. N. L., & Van Hullebusch, E. D. (2016). Recovery of molybdenum, nickel and cobalt by precipitation from the acidic leachate of a mineral sludge. Environmental Technology, 37(17), 2231–2242.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K. (2015). Biosorption of lanthanide (praseodymium) using Ulva lactuca: Mechanistic study and application of two, three, four and five parameter isotherm models. Journal of Environment and Biotechnology Ressearch, 1(1), 10–17.

    Google Scholar 

  • Vijayaraghavan, K., & Jegan, J. (2015). Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions. Journal of Rare Earths, 33(11), 1196–1203.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

    Article  CAS  Google Scholar 

  • Volesky, B. (1987). Biosorbents for metal recovery. Trends in Biotechnology, 5(4), 96–101.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Biosorption process simulation tools. Hydrometallurgy, 71(1), 179–190.

    Article  CAS  Google Scholar 

  • Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226.

    Article  Google Scholar 

  • Wang, L. K., Yung-tse, H., & Shammas, N. K. (Eds.). (2005). Physicochemical treatment processes (Vol. 3). Humana Press.

    Google Scholar 

  • Wang, W., Pranolo, Y., & Cheng, C. Y. (2011). Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy, 108(1), 100–108.

    Article  CAS  Google Scholar 

  • Zhang, Y., Feng, X., & Jin, B. (2020). An effective separation process of arsenic, lead, and zinc from high arsenic-containing copper smelting ashes by Alkali leaching followed by sulfide precipitation. Waste Management and Research, 38(11), 1214–1221.

    Article  Google Scholar 

  • Zhu, X., Li, W., Tang, S., Zeng, M., Bai, P., & Chen, L. (2017). Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud. Chemosphere, 175, 365–372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ali Kucuker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kucuker, M.A. (2024). Recovery of Metals from Leach Liquors: Biosorption versus Metal Sulfide Precipitation. In: Panda, S., Mishra, S., Akcil, A., Van Hullebusch, E.D. (eds) Biotechnological Innovations in the Mineral-Metal Industry. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-43625-3_9

Download citation

Publish with us

Policies and ethics