Skip to main content

Role of Biosurfactants in Heavy Metal Removal and Mineral Flotation

  • Chapter
  • First Online:
Biotechnological Innovations in the Mineral-Metal Industry

Abstract

Surfactants are chemical compounds produced from petroleum feedstock, agro-based waste materials and microbial fermentation having wide variety of use in industries, pharmaceutical, agriculture, cosmetics, etc. These are amphiphilic moieties and chemically synthesised. These chemical compounds are toxic and are responsible for various harmful environmental problems. Recently, biosurfactants have gained lots of interest worldwide, because they are green-alternatives for surfactants. Biosurfactants are produced naturally from microorganisms like yeast, fungi and bacteria. These have both hydrophobic and hydrophilic groups which makes its unique and important in different industries. These organisms produce surface active metabolites or secondary metabolites and grow on water immiscible or oily surface. The surface active molecules help them to absorb, emulsify, wetting, solubilise and disperse the water immiscible substances. Biosurfactants are in demand and commercially promising due to their properties, i.e., low toxicity, higher biodegradability, environmental compatibility, foaming properties, shows stable activity at extreme pH, temperature and salinity, etc. Biosurfactants play very crucial role in mineral flotation. Heavy metal removal and mineral flotation is a very crucial process for industries (which commercially separates metals from ores by collecting them on the surface/froth layer—so the metals can be used commercially) and also for the environment. Biosurfactant mediated mineral floatation and heavy metal removal involves the metal ion sorption to sorbent material followed by floatation and floatation product collection. Using biosurfactants in replacement of surfactants for heavy metal removal and mineral floatation are actually effective, low cost, recyclable, reusable and environmental friendly. This chapter emphasises on removal of some metals from their respective ores using different biosurfactants. A probable mechanism of flotation by biosurfactant is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos, A., Pinaso, A., Infante, M. R., Casals, M., Garcia, F., & Manresa, A. (2001). Physicochemical and antimicrobial properties of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 17, 1367–1371.

    Article  CAS  Google Scholar 

  • Açıkel, Y. S. (2011). Use of biosurfactants in the removal of heavy metal ions from soils. In Biomanagement of metal-contaminated soils (pp. 183–223). Springer.

    Google Scholar 

  • AytarÇelik, P., Çakmak, H., & ÖzAksoy, D. (2021). Green bioflotation of calcite using surfactin as a collector. Journal of Dispersion Science and Technology, 1–11.

    Google Scholar 

  • Banat, I. M., Franzetti, A., Gandolfi, I., et al. (2010b). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, 427–444.

    Article  CAS  Google Scholar 

  • Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J., & Marchant, R. (2010a). Microbial biosurfactants production, applications. Applied Microbiology and Biotechnology, 87, 427–444.

    Article  CAS  Google Scholar 

  • Bodek, I., Lyman, W. J., Reehl, W. F., et al. (1998). Environmental inorganic chemistry: Properties, processes and estimation methods. Pergamon Press.

    Google Scholar 

  • Campos, J. M., Stamford, T. L. M., Sarubbo, L. A., Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29, 1097–1108.

    Article  CAS  Google Scholar 

  • Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A., do Carmo, M., Peralba, R., & Bento, F. M. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technolology, 102, 11003–11010.

    Google Scholar 

  • Christofi, N., & Ivshina, I. B. (2002). Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93, 915–929.

    Article  CAS  Google Scholar 

  • Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  Google Scholar 

  • Esther, J., Panda, S., Behera, S. K., Sukla, L. B., Pradhan, N., & Mishra, B. K. (2013). Effect of dissimilatory Fe (III) reducers on bio-reduction and nickel–cobalt recovery from Sukinda chromite-overburden. Bioresource Technology, 146, 762–766.

    Article  CAS  Google Scholar 

  • Fazaelipoor, M. H., Khoshdast, H., & Ranjbar, M. (2010). Coal flotation using a biosurfactant from Pseudomonas aeruginosa as a frother. Korean Journal of Chemical Engineering, 27(5), 1527–1531.

    Article  CAS  Google Scholar 

  • Frazer, L. (2000). Innovations: Lipid lather removes metals. Environmental Health Perspectives, 108, A320–A323.

    Article  CAS  Google Scholar 

  • Gurjar, J., & Sengupta, B. (2015). Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423. Bioresource Technology, 189, 243–249.

    Article  CAS  Google Scholar 

  • Haba, E., Pinazo, A., Jauregui, O., Espuny, M. J., Infante, M. R., & Manresa, A. (2003). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnology and Bioengineering, 81, 316–322.

    Article  CAS  Google Scholar 

  • Inès, M., & Dhouha, G. (2015). Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydrate Research, 416, 59–69.

    Article  Google Scholar 

  • Khoshdast, H., Abbasi, H., Sam, A., & Noghabi, K. A. (2012). Frothability and surface behavior of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa MA01. Biochemical Engineering Journal, 60, 127–134.

    Article  CAS  Google Scholar 

  • Khoshdast, H., & Sam, A. (2012). An efficiency evaluation of iron concentrates flotation using rhamnolipid biosurfactant as a frothing reagent. Environmental Engineering Research, 17(1), 9–15.

    Article  Google Scholar 

  • Khoshdast, H., Sam, A., Vali, H., & Noghabi, K. A. (2011). Effect of rhamnolipid biosurfactants on performance of coal and mineral flotation. International Biodeterioration & Biodegradation, 65(8), 1238–1243.

    Article  CAS  Google Scholar 

  • Kim, J., & Vipulanandan, C. (2006). Removal of lead from contaminated water and clay soil using a biosurfactant. Journal of Environmental Engineering, 132, 777–786.

    Article  CAS  Google Scholar 

  • Langley, S., & Beveridge, T. J. (1999). Effect of O-side chain-lipopolysaccharide chemistry on metal binding. Applied and Environment Microbiology, 65, 489–498.

    Article  CAS  Google Scholar 

  • Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. Applied Microbiology and Biotechnology, 1, 1–19.

    Google Scholar 

  • Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials, 285, 419–435.

    Article  CAS  Google Scholar 

  • Matis, K. A., Zouboulis, A. I., Lazaridis, N. K., & Hancock, I. C. (2003). Sorptive flotation for metal ions recovery. International Journal of Mineral Processing, 70(1–4), 99–108.

    Article  CAS  Google Scholar 

  • Mishra, S., Lin, Z., Pang, S., Zhang, Y., Bhatt, P., & Chen, S. (2021). Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. Journal of Hazardous Materials, 126253.

    Google Scholar 

  • Mishra, S., Panda, S., Pradhan, N., Satapathy, D., Biswal, S. K., & Mishra, B. K. (2017). Insights into DBT biodegradation by a native Rhodococcus strain and its sulphur removal efficacy for two Indian coals and calcined pet coke. International Biodeterioration & Biodegradation, 120, 124–134.

    Article  CAS  Google Scholar 

  • Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183–198.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Gibbs, B. F. (1993). Factors influencing the economics of biosurfactants. In N. Kosaric (Ed.), Biosurfactants, production, properties, applications (pp. 329–371). Marcel Dekker.

    Google Scholar 

  • Mulligan, C. N., Oghenekevwe, C., Fukue, M., et al. (2007). Biosurfactant enhanced remediation of a mixed contaminated soil and metal contaminated sediment. Paper presented at Geoenvironmental Engineering Seminar. 7th Meeting; 2007 May 19–24; Japan–Korea–France

    Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (1999). Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environmental Science and Technology, 33, 3812–3820.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001a). Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials, 85, 111–125.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001b). Remediation technologies for metal contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Nakar, D., & Gutnick, D. L. (2003). Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1. Journal of Bacteriology, 185(3), 1001–1009.

    Article  CAS  Google Scholar 

  • Okoliegbe, I. N., & Agarry, O. O. (2012). Application of microbial surfactant (a review). Department of Biological Sciences University of Abuja, Federal Capital Territory, Abuja, Nigeria. Accepted 28 February 2012

    Google Scholar 

  • Pacwa-Plociniczak, M., Plaza, G. A., Piotrowska-Seget, Z., et al. (2011b). Environmental applications of biosurfactants: Recent advances. International Journal of Molecular Sciences, 12, 633–654.

    Article  CAS  Google Scholar 

  • Pacwa-Plociniczak, M., Plaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011a). Environmental applications of biosurfactants: Recent advances. International Journal of Molecular Sciences, 13, 633–654.

    Article  Google Scholar 

  • Panda, S., Pradhan, N., Mohapatra, U., Panda, S. K., Rath, S. S., Rao, D. S., Nayak, B., Sukla, L. B., & Mishra, B. K. (2013). Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage. Frontiers of Environmental Science & Engineering, 7, 281–293.

    Article  CAS  Google Scholar 

  • Panda, S., Rout, P. C., Sarangi, C. K., Mishra, S., Pradhan, N., Mohapatra, U., Subbaiah, T., Sukla, L. B., & Mishra, B. K. (2014). Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route. Korean Journal of Chemical Engineering, 31, 452–460.

    Article  CAS  Google Scholar 

  • Panda, S., Sarangi, C. K., Pradhan, N., Subbaiah, T., Sukla, L. B., Mishra, B. K., Bhatoa, G. L., Prasad, M., & Ray, S. K. (2012). Bio-hydrometallurgical processing of low-grade chalcopyrite for the recovery of copper metal. Korean Journal of Chemical Engineering, 29, 781–785.

    Article  CAS  Google Scholar 

  • Preetam, S., Dash, L., Sarangi, S. S., Sahoo, M. M., & Pradhan, A. K. (2022). Application of nanobiosensor in health care sector. Bio-Nano Interface, 251–270.

    Google Scholar 

  • Robert, M., Mercade, M. E., Bosch, M. P., Parra, J. L., Espiny, M. J., Manresa, M. A., & Guinea, J. (1989). Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnology Letters, 11, 871–887.

    Article  CAS  Google Scholar 

  • Rosa, C. F. C., Freire, D. M. G., & Ferraz, E. C. (2015). Biosurfactant microfoam: Application in the removal of pollutants from soil. Journal of Environmental Chemical Engineering, 3, 89–94.

    Article  Google Scholar 

  • Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 401.

    Article  Google Scholar 

  • Sarma, H., Bustamante, K. L. T., & Prasad, M. N. V. (2019). Biosurfactants for oil recovery from refinery sludge: Magnetic nanoparticles assisted purification. In Industrial and municipal sludge (pp. 107–132). Butterworth-Heinemann.

    Google Scholar 

  • Sarubbo, L. A., Rocha, R. B., Jr., Luna, J. M., Rufino, R. D., Santos, V. A., & Banat, I. M. (2015). Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 31(8), 707–723.

    Article  CAS  Google Scholar 

  • Silva, R. C. F. S., Almeida, D. G., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International Journal of Molecular Sciences, 15, 12523–12542.

    Article  Google Scholar 

  • Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications, 319, 291–297.

    Article  CAS  Google Scholar 

  • Tolley, W., Kotlyar, D., & Van Wagoner, R. (1996). Fundamental electrochemical studies of sulfide mineral flotation. Minerals Engineering, 9(6), 603–637.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 24, 604–620.

    Google Scholar 

  • Vijayakumar, S., & Saravanan, V. (2015). Biosurfactants-types, sources and applications. Research Journal of Microbiology, 10, 181–192.

    Article  Google Scholar 

  • Zamboulis, D., Pataroudi, S. I., Zouboulis, A. I., & Matis, K. A. (2004). The application of sorptive flotation for the removal of metal ions. Desalination, 162, 159–168.

    Article  CAS  Google Scholar 

  • Zhang, C. X., Yang, S. Y., Xu, M. X., Sun, J., Liu, H., Liu, J. R., Liu, H., Kan, F., Sun, J., Lai, R., & Zhang, K. Y. (2009). Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoideschongmingensis (Rhabditida: Rhabditidae). International journal of systematic and evolutionary microbiology, 59(7), 1603–1608.

    Google Scholar 

  • Zhang, Y., & Miller, R. M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environment Microbiology, 58, 3276–3282.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., Matis, K. A., Lazaridis, N. K., & Golyshin, P. N. (2003). The use of biosurfactants in flotation: Application for the removal of metal ions. Minerals Engineering, 16(11), 1231–1236.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, M., Pradhan, S., Preetam, S., Pradhan, A.K. (2024). Role of Biosurfactants in Heavy Metal Removal and Mineral Flotation. In: Panda, S., Mishra, S., Akcil, A., Van Hullebusch, E.D. (eds) Biotechnological Innovations in the Mineral-Metal Industry. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-43625-3_8

Download citation

Publish with us

Policies and ethics