Skip to main content

Towards Systematic Treatment of Partial Functions in Knowledge Representation

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Partial functions are ubiquitous in Knowledge Representation applications, ranging from practical, e.g., business applications, to more abstract, e.g., mathematical and programming applications. Expressing propositions about partial functions may lead to non/denoting terms resulting in undefinedness errors and ambiguity, causing subtle modeling and reasoning problems.

In our approach, formulas are well-defined (true or false) and non/ambiguous in all structures. We develop a base extension of three/valued predicate logic, in which partial function terms are guarded by domain expressions ensuring the well/definedness property despite the three/valued nature of the underlying logic. To tackle the verbosity of this core language, we propose different ways to increase convenience by using disambiguating annotations and non/commutative connectives. We show a reduction of the logic to two/valued logic of total functions and prove that many different unnesting methods turning partial functions into graph predicates, which are not equivalence preserving in general, are equivalence preserving in the proposed language, showing that ambiguity is avoided.

This work was partially supported by the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ver/1 and Col/1 are denoting the set of vertices and colours respectively, Nei/2 is neighbourhood relation, and function colOf/1 is mapping objects to their colour.

  2. 2.

    Grice’s principle of cooperativity explains that the human interpretation of a text is influenced by a subconscious desire to make good sense of it.

  3. 3.

    Note that every structure with the same domain interpreters “\(=\)” as the same relation. All other language built-in relations and functions are to be interpreted in the same way. Note that in the case of partial functions their domain predicate would also be interpreted (e.g., division/would come with \(\delta _/\) that is true for all pairs of numbers \((x_1,x_2)\) such that \(x_2 \ne 0\).

  4. 4.

    It is also possible to move undefined values into the structure and then just manipulate it in the evaluation function. However, we choose to stay close to the standard set/theoretic implementation of concepts.

  5. 5.

    The total expansion of a structure does not satisfy the constraints of a partial function structure (Definition 4).

  6. 6.

    The notation for operators is selected to be aligned with the intuition of modal operators, i.e., \(\pmb {[[}\pmb {]]}\) expresses the necessity that all terms are defined, while \(\pmb {\langle \langle } \pmb {\rangle \rangle }\) expresses possibility.

  7. 7.

    We use constants F for France, B for blue and R for red.

  8. 8.

    Recall that the graph predicate of a function f is denoted with \(\gamma _f\).

  9. 9.

    The proof is omitted due to space constraints.

  10. 10.

    Weak unnesting becomes strong when the formula occurs in a negative context (odd number of negations upper in syntax tree). This can cause problems, i.e., some connectives (e.g., \(\Leftrightarrow \)) contain implicit negations, and hence polarity is not well defined.

References

  1. Balduccini, M.: A “conservative’’ approach to extending answer set programming with non-Herbrand functions. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 24–39. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0_3

    Chapter  Google Scholar 

  2. Balduccini, M.: ASP with non-Herbrand partial functions: a language and system for practical use. Theory Pract. Logic Program. 13(4–5), 547–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L.: A practical approach to partial functions in CVC lite. Electron. Notes Theor. Comput. Sci. 125(3), 13–23 (2005)

    Article  MATH  Google Scholar 

  4. Cabalar, P.: Partial functions and equality in answer set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 392–406. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_36

    Chapter  MATH  Google Scholar 

  5. Cristiá, M., Rossi, G., Frydman, C.S.: Adding partial functions to Constraint Logic Programming with sets. Theory Pract. Log. Program. 15, 651–665 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modeling language: the IDP system. In: Declarative Logic Programming: Theory, Systems, and Applications, pp. 279–323. Association for Computing Machinery and Morgan & Claypool (2018)

    Google Scholar 

  7. Farmer, W.M.: A partial functions version of Church’s simple theory of types. J. Symb. Log. 55(3), 1269–1291 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fitting, M.: Kleene’s three valued logics and their children. Fundam. Inform. 20(1, 2, 3), 113–131 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frisch, A.M., Stuckey, P.J.: The proper treatment of undefinedness in constraint languages. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 367–382. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_30

    Chapter  Google Scholar 

  10. Gavilanes-Franco, A., Lucio-Carrasco, F.: A first order logic for partial functions. Theoret. Comput. Sci. 74(1), 37–69 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satisfiability, pp. 993–1014. IOS press (2021)

    Google Scholar 

  12. Hoang, T.S.: An introduction to the Event-B modelling method. Industr. Deploy. Syst. Eng. Methods 211–236 (2013)

    Google Scholar 

  13. Kleene, S.C.: Introduction to Metamathematics. North Holland, Princeton (1952)

    Google Scholar 

  14. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_19

    Chapter  Google Scholar 

  15. McCarthy, J.: A basis for a mathematical theory of computation. In: Studies in Logic and the Foundations of Mathematics, vol. 26, pp. 33–70. Elsevier (1959)

    Google Scholar 

  16. McCarthy, J.: Elaboration tolerance. In: Common Sense, vol. 98, p. 2 (1998)

    Google Scholar 

  17. Mitchell, D., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a framework for modelling and solving search problems. Technical report, Citeseer (2006)

    Google Scholar 

  18. Nivelle, H.: Classical logic with partial functions. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 203–217. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_18

    Chapter  Google Scholar 

  19. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_23

    Chapter  Google Scholar 

  20. Russell, B.: On denoting. Mind 14(56), 479–493 (1905)

    Article  Google Scholar 

  21. Schock, R.: Logics Without Existence Assumptions. Stockholm, Almqvist & Wiksell, Stockholm (1968)

    MATH  Google Scholar 

  22. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey, C., Scott, D. (eds.) Applications of Sheaves. LNM, vol. 753, pp. 660–696. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0061839

    Chapter  Google Scholar 

  23. Strawson, P.F.: On referring. Mind 59(235), 320–344 (1950)

    Article  Google Scholar 

  24. Suppes, P.: Introduction to Logic. Courier Corporation (1999)

    Google Scholar 

  25. Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds. J. Artif. Intell. Res. 38, 223–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to Pierre Carbonnelle, Gerda Janssens, Linde Vanbesien, and Marcos Cramer for the discussions and for reading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Markovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markovic, D., Bruynooghe, M., Denecker, M. (2023). Towards Systematic Treatment of Partial Functions in Knowledge Representation. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics