Skip to main content

Hamiltonian Cycle Reconfiguration with Answer Set Programming

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

The Hamiltonian cycle reconfiguration problem is defined as determining, for a given Hamiltonian cycle problem and two among its feasible solutions, whether one is reachable from another via a sequence of feasible solutions subject to certain transition constraints. We develop an approach to solving the Hamiltonian cycle reconfiguration problem based on Answer Set Programming (ASP). Our approach relies on a high-level ASP encoding and delegates both the grounding and solving tasks to an ASP-based solver. To show the effectiveness of our approach, we conduct experiments on the benchmark set of Flinders Hamiltonian Cycle Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://core-challenge.github.io/2022/.

  2. 2.

    https://sites.flinders.edu.au/flinders-hamiltonian-cycle-project/.

  3. 3.

    https://interstices.info/le-defi-des-1001-graphes/.

  4. 4.

    https://github.com/marijnheule/ChineseRemainderEncoding.

  5. 5.

    https://github.com/arminbiere/cadical.

  6. 6.

    https://github.com/nfzhou/xcsp.

References

  1. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C., Roussel, O.: XCSP\({}^{\text{3 }}\) and its ecosystem. Constraints 25(1–2), 47–69 (2020)

    Article  MathSciNet  Google Scholar 

  2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., Schaub, T.: Answer set programming modulo acyclicity. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 143–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_13

    Chapter  MATH  Google Scholar 

  4. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brewster, R.C., McGuinness, S., Moore, B.R., Noel, J.A.: A dichotomy theorem for circular colouring reconfiguration. Theoret. Comput. Sci. 639, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gebser, M., et al.: Potassco User Guide, 2nd edn. University of Potsdam (2015). http://potassco.org

  8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theoret. Comput. Sci. 651, 37–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haythorpe, M.: FHCP challenge set: the first set of structurally difficult instances of the Hamiltonian cycle problem. Bulletin ICA 83, 98–107 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Heule, M.J.H.: Chinese remainder encoding for Hamiltonian cycles. In: Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 216–224. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80223-3_15

    Chapter  Google Scholar 

  13. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

    Google Scholar 

  14. Inoue, T., et al.: Distribution loss minimization with guaranteed error bound. IEEE Trans. Smart Grid 5(1), 102–111 (2014)

    Article  Google Scholar 

  15. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12–14), 1054–1065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discret. Appl. Math. 160(15), 2199–2207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7_24

    Chapter  Google Scholar 

  18. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_19

    Chapter  MATH  Google Scholar 

  19. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own asp-based system?! Theory Pract. Logic Program. 23(1), 299–361 (2023)

    Article  MathSciNet  Google Scholar 

  21. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  22. Lifschitz, V.: Answer Set Programming. Springer, Heidelberg (2019)

    Book  MATH  Google Scholar 

  23. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, L., Truszczynski, M.: Encoding selection for solving Hamiltonian cycle problems with ASP. In: Proceedings of the 35th International Conference on Logic Programming (ICLP 2019), Technical Communications. EPTCS, vol. 306, pp. 302–308 (2019)

    Google Scholar 

  25. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J. Discret. Math. 31(3), 2185–2200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-based method with native Boolean cardinality handling for the Hamiltonian cycle problem. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 684–693. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_52

    Chapter  Google Scholar 

  29. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions. CoRR abs/2208.02495 (2022)

    Google Scholar 

  30. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Takaoka, A.: Complexity of Hamiltonian cycle reconfiguration. Algorithms 11(9), 140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, N.-F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with Picat. SIS, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25883-6

    Book  Google Scholar 

Download references

Acknowledgements

The research was supported by JSPS KAKENHI Grant Number JP20H05964, ROIS NII Open Collaborative Research 2023 (23FP04), JST CREST Grant Number JPMJCR22D3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsunori Banbara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirate, T. et al. (2023). Hamiltonian Cycle Reconfiguration with Answer Set Programming. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics