Skip to main content

Comparing Planning Domain Models Using Answer Set Programming

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14281))

Included in the following conference series:

  • 377 Accesses

Abstract

Automated planning is a prominent area of Artificial Intelligence, and an important component for intelligent autonomous agents. A critical aspect of domain-independent planning is the domain model, that encodes a formal representation of domain knowledge needed to reason upon a given problem. Despite the crucial role of domain models in automated planning, there is lack of tools supporting knowledge engineering process by comparing different versions of the models, in particular, determining and highlighting differences the models have.

In this paper, we build on the notion of strong equivalence of domain models and formalise a novel concept of similarity of domain models. To measure the similarity of two models, we introduce a directed graph representation of lifted domain models that allows to formulate the domain model similarity problem as a variant of the graph edit distance problem. We propose an Answer Set Programming approach to optimally solve the domain model similarity problem, that identifies the minimum number of modifications the models need to become strongly equivalent, and we demonstrate the capabilities of the approach on a range of benchmark models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Encoding and benchmarks are available at: https://github.com/MarcoMochi/jelia-planning.

References

  1. Ai-Chang, M., et al.: MAPGEN: mixed-initiative planning and scheduling for the mars exploration rover mission. IEEE Intell. Syst. 19(1), 8–12 (2004)

    Article  Google Scholar 

  2. Alviano, M., Dodaro, C., Previti, A.: Python Specification Language (2021). https://github.com/dodaro/pyspel

  3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511543357

  4. Bengoetxea, E.: Inexact Graph Matching Using Estimation of Distribution Algorithms. Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications, Paris, France, December 2002

    Google Scholar 

  5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  6. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Log. Program. 20(2), 294–309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardellini, M., Maratea, M., Vallati, M., Boleto, G., Oneto, L.: In-station train dispatching: a PDDL+ planning approach. In: Proceedings of ICAPS, pp. 450–458 (2021)

    Google Scholar 

  8. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations as model reconciliation: moving beyond explanation as soliloquy. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, pp. 156–163 (2017)

    Google Scholar 

  9. Chrpa, L., McCluskey, T.L., Vallati, M., Vaquero, T.: The fifth international competition on knowledge engineering for planning and scheduling: summary and trends. AI Mag. 38(1), 104–106 (2017)

    Google Scholar 

  10. Coulter, A., Ilie, T., Tibando, R., Muise, C.: Theory alignment via a classical encoding of regular bisimulation. In: Workshop on Knowledge Engineering for Planning and Scheduling (KEPS) (2022)

    Google Scholar 

  11. Cresswell, S., McCluskey, T.L., West, M.M.: Acquiring planning domain models using LOCM. Knowl. Eng. Rev. 28(2), 195–213 (2013)

    Article  Google Scholar 

  12. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif. Intell. Res. 27, 235–297 (2006)

    Article  MATH  Google Scholar 

  13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with Clingo 5. In: ICLP (Technical Communications). OASICS, vol. 52, pp. 2:1–2:15 (2016)

    Google Scholar 

  14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. N. Gener. Comput. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  15. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program. 17(5–6), 872–888 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. McCluskey, T.L., Porteous, J.M.: Engineering and compiling planning domain models to promote validity and efficiency. Artif. Intell. 95(1), 1–65 (1997)

    Article  MATH  Google Scholar 

  17. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning: towards a notion of quality. In: Proceedings of K-CAP, pp. 14:1–14:8 (2017)

    Google Scholar 

  18. Nguyen, V., Son, T.C., Yeoh, W.: Explainable problem in clingo-dl programs. In: Ma, H., Serina, I. (eds.) Proceedings of the Fourteenth International Symposium on Combinatorial Search (SOCS 2021), pp. 231–232. AAAI Press (2021)

    Google Scholar 

  19. Nguyen, V., Stylianos, V.L., Son, T.C., Yeoh, W.: Explainable planning using answer set programming. In: Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR, pp. 662–666 (2020)

    Google Scholar 

  20. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramírez, M., et al.: Integrated hybrid planning and programmed control for real time UAV maneuvering. In: Proceedings of the AAMAS, pp. 1318–1326 (2018)

    Google Scholar 

  22. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.6313167

  23. Shah, M.M.S., Chrpa, L., Kitchin, D.E., McCluskey, T.L., Vallati, M.: Exploring knowledge engineering strategies in designing and modelling a road traffic accident management domain. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 2373–2379 (2013)

    Google Scholar 

  24. Shoeeb, S., McCluskey, T.: On comparing planning domain models. In: PlanSIG Workshop (2011)

    Google Scholar 

  25. Shrinah, A., Long, D., Eder, K.: D-VAL: an automatic functional equivalence validation tool for planning domain models. arXiv preprint arXiv:2104.14602 (2021)

  26. Son, T.C., Nguyen, V., Vasileiou, S.L., Yeoh, W.: Model reconciliation in logic programs. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 393–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_26

    Chapter  MATH  Google Scholar 

  27. Vallati, M., Chrpa, L.: On the robustness of domain-independent planning engines: the impact of poorly-engineered knowledge. In: Proceedings of K-CAP, pp. 197–204 (2019)

    Google Scholar 

  28. Vallati, M., McCluskey, T.L.: A quality framework for automated planning knowledge models. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence, ICAART, pp. 635–644 (2021)

    Google Scholar 

  29. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

L. Chrpa was funded by the Czech Science Foundation (project no. 23-05575S). M. Vallati was supported by the UKRI Future Leaders Fellowship [grant number MR/T041196/1]. C. Dodaro was supported by Italian Ministry of Research (MUR) under PNRR projects FAIR “Future AI Research”, CUP H23C22000860006, and Tech4You “Technologies for climate change adaptation and quality of life improvement”, CUP H23C22000370006;

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Chrpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chrpa, L., Dodaro, C., Maratea, M., Mochi, M., Vallati, M. (2023). Comparing Planning Domain Models Using Answer Set Programming. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics