Skip to main content

Robust State of Charge Estimation and Simulation of Lithium-Ion Batteries Using Deep Neural Network and Optimized Random Forest Regression Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Industrial Applications (A2IA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 772))

  • 276 Accesses

Abstract

The estimation of the state of charge (SoC) of lithium-ion batteries is crucial for battery management systems. SoC is one of the most critical parameters that must be determined in real-time to ensure the reliable and safe operation of Li-ion batteries. SoC is a non-measurable parameter, but its value can be derived from other measurable parameters, such as current, voltage, and temperature. Unlike most studies available in the literature, this paper presents a comparative study between two machine learning methods: the Random Forest Regressor (RFR) and the Multi-layer Perceptron (MLP) to accurately estimate the SoC of lithium-ion batteries from data collected under Matlab/Simulink software from a \(LiCoO_2\) battery cell, taking into account the effect of the operating temperature on the battery, and under different current charge/discharge profiles. The results indicate that the Random Forest regressor model is reliable in estimating the SoC with a coefficient of determination of 0.99, a mean error value of less than 0.5%, and a maximum error value of less than 1.83%. In contrast, the MLP yields a mean error value of less than 0.8%, and a maximum error value of less than 1.87%, demonstrating the accuracy and robustness of the Random Forest regressor model for SoC estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mwasilu, F., John, J.J., Eun-Kyung, K., Duc, D.T., Jin-Woo, J.: Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 34, 501–516 (2014)

    Article  Google Scholar 

  2. Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sour. 195(9), 2419–2430 (2010)

    Article  Google Scholar 

  3. Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sour. 226, 272–288 (2013)

    Article  Google Scholar 

  4. Wang, Z., Feng, G., Zhen, D., Gu, F., Ball, A.: A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Energy Rep. 7, 5141–5161 (2021)

    Article  Google Scholar 

  5. McCurlie, L., Preindl, M., Emadi, A.: Fast model predictive control for redistributive lithium-ion battery balancing. IEEE Trans. Industr. Electron. 64(2), 1350–1357 (2016)

    Article  Google Scholar 

  6. Malysz, P., Gu, R., Ye, J., Yang, H., Emadi, A.: State-of-charge and state-of-health estimation with state constraints and current sensor bias correction for electrified powertrain vehicle batteries. IET Elect. Syst. Transp. 6(2), 136–144 (2016)

    Article  Google Scholar 

  7. Chen, X., Shen, W., Dai, M., Cao, Z., Jin, J., Kapoor, A.: Robust adaptive sliding-mode observer using RBF neural network for lithium-ion battery state of charge estimation in electric vehicles. IEEE Trans. Veh. Technol. 65(4), 1936–1947 (2015)

    Article  Google Scholar 

  8. Chen, Y., Li, C., Chen, S., Ren, H., Gao, Z.: A combined robust approach based on auto-regressive long short-term memory network and moving horizon estimation for state-of-charge estimation of lithium-ion batteries. Int. J. Energy Res. 45(9), 12838–12853 (2021)

    Article  Google Scholar 

  9. El Fallah, S., Kharbach, J., Hammouch, Z., Rezzouk, A., Jamil, M.O.: State of charge estimation of an electric vehicle’s battery using deep neural networks: simulation and experimental results. J. Energy Stor. 62, 106904 (2023)

    Article  Google Scholar 

  10. Tao, L., Ma, J., Cheng, Y., Noktehdan, A., Chong, J., Lu, C.: A review of stochastic battery models and health management. Renew. Sustain. Energy Rev. 80, 716–732 (2017)

    Article  Google Scholar 

  11. Elouazzani, H., Elhassani, I., Ouazzani-Jamil, M., Masrour, T.: State of charge estimation of lithium-ion batteries using artificial intelligence based on entropy and enthalpy variation. In: Ben Ahmed, M., Boudhir, A.A., Santos, D., Dionisio, R., Benaya, N. (eds.) Innovations in Smart Cities Applications Volume 6. SCA 2022. LNNS, vol. 629, pp. 747–756. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26852-6_69

  12. Edi, L., Nashirul, H.I., Muhammad, I., Soelami, F.N., Merthayasa, I.G.N.: State of charge (SoC) estimation on LiFePO 4 battery module using Coulomb counting methods with modified Peukert. In: 2013 Joint International Conference on Rural Information Communication Technology and Electric-Vehicle Technology (rICT ICeV-T). IEEE (2013)

    Google Scholar 

  13. Hongwen, H., Xiaowei, Z., Xiong Rui, X., Yongli, G.H.: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39(1), 310–318 (2012)

    Article  Google Scholar 

  14. Rui, X., Hongwen, H., Fengchun, S., Kai, Z.: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 62(1), 108–117 (2012)

    Google Scholar 

  15. Jinhao, M., Luo, G., Gao, F.: Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine. IEEE Trans. Power Electron. 31(3), 2226–2238 (2015)

    Google Scholar 

  16. Shifei, Y., Hongjie, W., Yin, C.: State of charge estimation using the extended Kalman filter for battery management systems based on the ARX battery model. Energies 6(1), 444–470 (2013)

    Article  Google Scholar 

  17. Hossain, L.M.S., et al.: Real-time state of charge estimation of Lithium-ion batteries using optimized random forest regression algorithm. IEEE Trans. Intell. Veh. 8, 639–648 (2022)

    Article  Google Scholar 

  18. Chao, H., Gaurav, J., Puqiang, Z., Craig, S., Parthasarathy, G., Tom, G.: Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 129, 49–55 (2014)

    Article  Google Scholar 

  19. Hu, J.N., et al.: State-of-charge estimation for battery management system using optimized support vector machine for regression. J. Power Sour. 269, 682–693 (2014)

    Article  Google Scholar 

  20. Hasan A.J., Yusuf, J., Faruque, R.B.: Performance comparison of machine learning methods with distinct features to estimate battery SOC. In: 2019 IEEE Green Energy and Smart Systems Conference (IGESSC). IEEE (2019)

    Google Scholar 

  21. Fangfang, Y., Shaohui, Z., Weihua, L., Qiang, M.: State of charge estimation of lithium-ion batteries using LSTM and UKF. Energy 201, 117664 (2020)

    Article  Google Scholar 

  22. Jiazhi, M., Zheming, T., Shuiguang, T., Jun, Z., Jiale, M.: State of charge estimation of lithium-ion battery for electric vehicles under extreme operating temperatures based on an adaptive temporal convolutional network. Batteries 8(10), 145 (2022)

    Article  Google Scholar 

  23. Youssef, H.Y., et al.: A machine learning approach for state-of-charge estimation of Li-ion batteries. In: Artificial Intelligence and Machine Learning for Multi-domain Operations Applications IV, vol. 12113. SPIE (2022)

    Google Scholar 

  24. Chandran, V., Patil, C.K., Karthick, A., Ganeshaperumal, D., Rahim, R., Ghosh, A.: State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Elect. Veh. J. 12(1), 38 (2021)

    Article  Google Scholar 

  25. Niankai, Y., Ziyou, S., Heath, H., Jing, S.: Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest. J. Energy Stor. 48, 103857 (2022)

    Article  Google Scholar 

  26. Wang, D., Lee, J., Kim, M., Lee, I.: State of charge estimation using multi-layer neural networks based on temperature. In: 2022 22nd International Conference on Control, Automation and Systems (ICCAS). IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad El Fallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Fallah, S., Kharbach, J., Rezzouk, A., Ouazzani Jamil, M. (2023). Robust State of Charge Estimation and Simulation of Lithium-Ion Batteries Using Deep Neural Network and Optimized Random Forest Regression Algorithm. In: Masrour, T., Ramchoun, H., Hajji, T., Hosni, M. (eds) Artificial Intelligence and Industrial Applications. A2IA 2023. Lecture Notes in Networks and Systems, vol 772. Springer, Cham. https://doi.org/10.1007/978-3-031-43520-1_4

Download citation

Publish with us

Policies and ethics