Skip to main content

CNS Compartments: The Anatomy and Physiology of the Cerebrospinal Fluid

  • Chapter
  • First Online:
Liquorpheresis

Abstract

This chapter revises the anatomy and physiology of the central nervous system (CNS) compartments. The CNS compartments consist of the brain and spinal cord tissue, which are divided into the intracellular space containing intracellular fluids and the extracellular space containing the interstitial fluid, as well as the cerebrospinal fluid (CSF) space, which is located within the ventricular system, in the cranial and spinal subarachnoid space, and in the perivascular spaces. The meninges are three protective membranes surrounding the brain and spinal cord, providing physical support, shock absorption, and protection from infection. There are three layers of meninges, from outermost to innermost: the dura mater, the arachnoid mater, and the pia mater. Recently, a novel layer in the meninges with immunological functions has been described and named the subarachnoid lymphatic-like membrane. The tissues and fluids of the CNS are safeguarded from exogenous and endogenous compounds present in the systemic circulation by the blood–brain barrier and blood–CSF barrier. These barriers are critical in maintaining the proper function of the CNS. Finally, we will focus on the glymphatic system, the CSF flow and clearance, and its driving mechanisms. Glymphatic flow occurs through the paravascular space when CSF flows through astroglial AQP4 channels and mixes with ISF to flow toward the venous system, where the CSF-ISF mixture enters the paravascular space and is cleared from the brain parenchyma. This flow depends on arterial pulsations to create a pressure gradient for the mixture to flow down. Lastly, PBM plays an important role in regulating arterial motion and, consequently, CSF-ISF flow. Under normal conditions, CSF is secreted via a two-step process, involving plasma filtration and ion pumping. CSF is mainly absorbed in the cranial arachnoid granulations, but the absorptive process is influenced by changes in the subarachnoid space pressure. The complex CSF flow involves the cardiovascular system, nerve roots, and arachnoid trabeculae. We will learn that CSF flow might be voluntarily modified by controlling breathing, neural activity, and exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  1. Bissenas A, Fleeting C, Patel D, Al-Bahou R, Patel A, Nguyen A, Woolridge M, Angelle C, Lucke-Wold B. CSF dynamics: implications for hydrocephalus and glymphatic clearance. Curr Res Med Sci. 2022;1(1):24–42. https://doi.org/10.56397/crms.2022.12.04.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boster KAS, Cai S, Ladrón-de-Guevara A, Sun J, Zheng X, Du T, Thomas JH, Nedergaard M, Karniadakis GE, Kelley DH. Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows. Proc Natl Acad Sci U S A. 2023;120(14):e2217744120. https://doi.org/10.1073/pnas.2217744120; Epub 2023 Mar 29.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen H. The blood-brain barrier: the frontier in aging and neurodegeneration. American Heart Association Blogs; 2023. https://doi.org/10.1161/blog.20230629.718116.

    Book  Google Scholar 

  4. Grubb S, Lauritzen M. Deep sleep drives brain fluid oscillations. Science. 2019;366:572–3. https://doi.org/10.1126/science.aaz5191.

    Article  PubMed  Google Scholar 

  5. Holstein-Rønsbo S, Gan Y, Giannetto MJ, et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat Neurosci. 2023;26:1042–53. https://doi.org/10.1038/s41593-023-01327-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hornkjøl M, Valnes LM, Ringstad G, Rognes ME, Eide P, Mardal K, Vinje V. CSF circulation and dispersion yield rapid clearance from intracranial compartments. Front Bioeng Biotechnol. 2022;10:932469. https://doi.org/10.3389/fbioe.2022.932469.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99. https://doi.org/10.1007/s11064-015-1581-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelley DH, Thomas JH. Cerebrospinal fluid flow. Annu Rev Fluid Mech. 2023;55:237. https://doi.org/10.1146/annurev-fluid-120720-011638.

    Article  Google Scholar 

  9. Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases—a glymphatic perspective. J Cereb Blood Flow Metab. 2021;41:2137–49. https://doi.org/10.1177/0271678X20982388.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu H, Barthélemy NR, Ovod V, Bollinger JG, He Y, Chahin SL, Androff B, Bateman RJ, Lucey BP. Acute sleep loss decreases CSF-to-blood clearance of Alzheimer's disease biomarkers. Alzheimers Dement. 2023;19:3055–64. https://doi.org/10.1002/alz.12930.

    Article  PubMed  Google Scholar 

  11. Mestre H, Verma N, Greene TD, Lin LA, Ladron-de-Guevara A, Sweeney AM, Liu G, Thomas VK, Galloway CA, de Mesy Bentley KL, Nedergaard M, Mehta RI. Periarteriolar spaces modulate cerebrospinal fluid transport into brain and demonstrate altered morphology in aging and Alzheimer’s disease. Nat Commun. 2022;13(1):3897. https://doi.org/10.1038/s41467-022-31257-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Min J, Rouanet J, Martini AC, Nashiro K, Yoo HJ, Porat S, Cho C, Wan J, Cole SW, Head E, Nation DA, Thayer JF, Mather M. Modulating heart rate oscillation affects plasma amyloid beta and tau levels in younger and older adults. Sci Rep. 2023;13(1):3967.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Møllgård K, Beinlich FR, Kusk P, Miyakoshi LM, Delle C, Plá V, Hauglund NL, Esmail T, Rasmussen MK, Gomolka RS, Mori Y, Nedergaard M. A mesothelium divides the subarachnoid space into functional compartments. Science. 2023;379(6627):84–8. https://doi.org/10.1126/science.adc8810.

    Article  PubMed  Google Scholar 

  14. Segeroth M, Wachsmuth L, Gagel M, et al. Disentangling the impact of cerebrospinal fluid formation and neuronal activity on solute clearance from the brain. Fluids Barriers CNS. 2023;20:43. https://doi.org/10.1186/s12987-023-00443-2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stokes C, White EF, Toddes S, Bens N, Kulkarni P, Ferris CF. Whole CNS 3D Cryo-fluorescence tomography shows CSF clearance along nasal lymphatics, spinal nerves, and lumbar/sacral lymph nodes. J Imaging. 2023;9:45. https://doi.org/10.3390/jimaging9020045.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mehta NH, Suss RA, Dyke JP, Theise ND, Chiang GC, Strauss S, Saint-Louis L, Li Y, Pahlajani S, Babaria V, Glodzik L, Carare RO, de Leon MJ. Quantifying cerebrospinal fluid dynamics: A review of human neuroimaging contributions to CSF physiology and neurodegenerative disease. Neurobiol Dis. 2022;170:105776. https://doi.org/10.1016/j.nbd.2022.105776.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mehta NH, Sherbansky J, Kamer AR, Carare RO, Butler T, Rusinek H, Chiang GC, Li Y, Strauss S, Saint-Louis LA, Theise ND, Suss RA, Blennow K, Kaplitt M, de Leon MJ. The brain-nose interface: a potential cerebrospinal fluid clearance site in humans. Front Physiol. 2022;12:769948. https://doi.org/10.3389/fphys.2021.769948.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moral-Pulido F, Jiménez-González JI, Gutiérrez-Montes C, Coenen W, Sánchez AL, Martínez-Bazán C. In vitro characterization of solute transport in the spinal canal. Phys Fluids. 2023;35(5):051905. https://doi.org/10.1063/5.0150158.

    Article  Google Scholar 

  19. Pedersen T, Agarwal S, Sevao M, Braun M, Keil S, Iliff J. 0089 chronic sleep disruption increases amyloid beta deposition and gliosis in the 5xFAD mouse model. Sleep. 2023;46(Supplement_1):A40. https://doi.org/10.1093/sleep/zsad077.0089.

    Article  Google Scholar 

  20. Rangroo Thrane V, Hynnekleiv L, Wang X, Thrane AS, Krohn J, Nedergaard M. Twists and turns of ocular glymphatic clearance - new study reveals surprising findings in glaucoma. Acta Ophthalmol. 2021;99(2):e283–4. https://doi.org/10.1111/aos.14524; Epub 2020 Jul 24.

    Article  PubMed  Google Scholar 

  21. Reddy OC, van der Werf YD. The sleeping brain: harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10(11):868. https://doi.org/10.3390/brainsci10110868.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spera I, Cousin N, Ries M, Kedracka A, Castillo A, Aleandri S, Vladymyrov M, Mapunda JA, Engelhardt B, Luciani P, Detmar M, Proulx ST. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine. 2023;91:104558. https://doi.org/10.1016/j.ebiom.2023.104558; Epub 2023 Apr 10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Trevisi G, Frassanito P, Di Rocco C. Idiopathic cerebrospinal fluid overproduction: case-based review of the pathophysiological mechanism implied in the cerebrospinal fluid production. Croat Med J. 2014;55(4):377–87.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shah T, Leurgans SE, Mehta RI, Yang J, Galloway CA, de Mesy Bentley KL, Schneider JA, Mehta RI. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J Exp Med. 2023;220(2):e20220618. https://doi.org/10.1084/jem.20220618.

    Article  PubMed  Google Scholar 

  25. Williams SD, Setzer B, Fultz NE, Valdiviezo Z, Tacugue N, Diamandis Z, et al. Neural activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in humans. PLoS Biol. 2023;21(3):e3002035. https://doi.org/10.1371/journal.pbio.3002035.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Menéndez González .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menéndez González, M. (2023). CNS Compartments: The Anatomy and Physiology of the Cerebrospinal Fluid. In: Liquorpheresis. Springer, Cham. https://doi.org/10.1007/978-3-031-43482-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43482-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43481-5

  • Online ISBN: 978-3-031-43482-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics