Skip to main content

Improved Multi-label Propagation for Small Data with Multi-objective Optimization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14172))

  • 917 Accesses

Abstract

This paper focuses on multi-label learning from small amounts of labelled data. We demonstrate that the binary-relevance extension of the interpolated label propagation algorithm, the harmonic function, is a competitive learning method with respect to many widely-used evaluation measures. This is achieved by a new transition matrix that better captures the underlying structure useful for classification coupled with the use of data dependent thresholding strategies. Furthermore, we show that in the case of label dependence, one can use the outputs of a competitive learning model as part of the input to the harmonic function to improve the performance of this model. Finally, since we are using multiple measures to thoroughly evaluate the performance of the algorithm, we propose to use the game-theory based method of Kalai and Smorodinsky to output a single compromise solution for all measures. This method can be applied to any learning model irrespective of the number of evaluation metrics used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The appendices are available at github.com/kmusayeva/M-LP.

  2. 2.

    To see this let (1, 0, 1, 1) be the true label set. Then, although both (1, 0, 0, 0) and (1, 1, 0, 1) predict two labels incorrectly, the latter provides a higher F1 value because it provides higher recall without much degrading the precision.

  3. 3.

    The code and the data are available at github.com/kmusayeva/M-LP.

  4. 4.

    All datasets except for Fungi are taken from https://www.uco.es/kdis/mllresources/. The Fungi dataset has been kindly provided to us by C. Averill [1].

References

  1. Averill, C., Werbin, Z., Atherton, K., Bhatnagar, J., Dietze, M.: Soil microbiome predictability increases with spatial and taxonomic scale. Nature Ecol. Evol. 5(6), 747–756 (2021)

    Article  Google Scholar 

  2. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56(1), 209–239 (2004)

    Article  MATH  Google Scholar 

  3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(11) (2006)

    Google Scholar 

  4. Binois, M., Picheny, V., Taillandier, P., Habbal, A.: The Kalai-Smorodinsky solution for many-objective Bayesian optimization. J. Mach. Learn. Res. 21(150), 1–42 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Chapelle, O., Weston, J., Schölkopf, B.: Cluster kernels for semi-supervised learning. In: Advances in Neural Information Processing Systems. Citeseer (2002)

    Google Scholar 

  6. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76, 211–225 (2009)

    Article  MATH  Google Scholar 

  7. Chung, F.: Spectral graph theory, vol. 92. American Mathematical Soc. (1997)

    Google Scholar 

  8. Dembczyński, K., Jachnik, A., Kotlowski, W., Waegeman, W., Hüllermeier, E.: Optimizing the F-measure in multi-label classification: Plug-in rule approach versus structured loss minimization. In: International Conference on Machine Learning, pp. 1130–1138. PMLR (2013)

    Google Scholar 

  9. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, W.: Regret analysis for performance metrics in multi-label classification: the case of Hamming and subset zero-one loss. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 280–295. Springer (2010)

    Google Scholar 

  10. Dembczyński, K.K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: ICML (2010)

    Google Scholar 

  11. Dembczyński, K.K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence in multilabel classification. In: LastCFP: ICML Workshop on learning from multi-label data. Ghent University, KERMIT, Department of Applied Mathematics, Biometrics (2010)

    Google Scholar 

  12. Doyle, P., Snell, J.: Random walks and electric networks, vol. 22. American Mathematical Soc. (1984)

    Google Scholar 

  13. Fan, R., Lin, C.: A study on threshold selection for multi-label classification, pp. 1–23. Department of Computer Science, National Taiwan University pp (2007)

    Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction, vol. 2. Springer (2009)

    Google Scholar 

  15. Kalai, E., Smorodinsky, M.: Other solutions to Nash’s bargaining problem. Econometrica: J. Econometric Soc., 513–518 (1975)

    Google Scholar 

  16. Kong, X., Ng, M., Zhou, Z.: Transductive multilabel learning via label set propagation. IEEE Trans. Knowl. Data Eng. 25(3), 704–719 (2011)

    Article  Google Scholar 

  17. Leathart, T., Frank, E., Holmes, G., Pfahringer, B.: Probability calibration trees. In: Asian Conference on Machine Learning, pp. 145–160 (2017)

    Google Scholar 

  18. Legendre, P., Gallagher, E.: Ecologically meaningful transformations for ordination of species data. Oecologia 129(2), 271–280 (2001)

    Article  Google Scholar 

  19. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Advances in neural information processing systems 14 (2001)

    Google Scholar 

  20. Picheny, V., Binois, M.: GPGame: Solving Complex Game Problems using Gaussian Processes (2022). www.github.com/vpicheny/GPGame, R package version 1.2.0

  21. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999)

    Google Scholar 

  22. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021). www.R-project.org/

  23. Read, J., Pfahringer, B., Holmes, G.: Generating synthetic multi-label data streams. In: ECML/PKKD 2009 Workshop on Learning from Multi-label Data (MLD 2009), pp. 69–84. Citeseer (2009)

    Google Scholar 

  24. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  25. Rivolli, A., de Carvalho, A.: The utiml package: Multi-label classification in R. R J. 10(2), 24 (2018)

    Article  Google Scholar 

  26. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Google Scholar 

  27. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_10

    Chapter  Google Scholar 

  28. Shi, C., Kong, X., Yu, P., Wang, B.: Multi-objective multi-label classification. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 355–366. SIAM (2012)

    Google Scholar 

  29. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator splitting solver for quadratic programs. Math. Program. Comput. 12(4), 637–672 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehousing Mining (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  31. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer (2009). https://doi.org/10.1007/978-0-387-09823-4_34

  32. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2010)

    Article  Google Scholar 

  33. Wang, B., Tu, Z., Tsotsos, J.: Dynamic label propagation for semi-supervised multi-class multi-label classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 425–432 (2013)

    Google Scholar 

  34. Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng. 20(1), 55–67 (2007)

    Article  Google Scholar 

  35. Yang, Y.: A study of thresholding strategies for text categorization. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 137–145 (2001)

    Google Scholar 

  36. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 694–699 (2002)

    Google Scholar 

  37. Zhang, M., Li, Y., Yang, H., Liu, X.: Towards class-imbalance aware multi-label learning. IEEE Trans. Cybern. (2020)

    Google Scholar 

  38. Zhang, M., Zhou: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Google Scholar 

  39. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2013)

    Article  Google Scholar 

  40. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

  41. Zhou, D., Schölkopf, B.: Learning from labeled and unlabeled data using random walks. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 237–244. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28649-3_29

    Chapter  Google Scholar 

  42. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002)

    Google Scholar 

  43. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Musayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musayeva, K., Binois, M. (2023). Improved Multi-label Propagation for Small Data with Multi-objective Optimization. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14172. Springer, Cham. https://doi.org/10.1007/978-3-031-43421-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43421-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43420-4

  • Online ISBN: 978-3-031-43421-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics