Skip to main content

Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs Using Confidence-Augmented Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14171))

Abstract

Temporal knowledge graph completion (TKGC) aims to predict the missing links among the entities in a temporal knowledge graph (TKG). Most previous TKGC methods only consider predicting the missing links among the entities seen in the training set, while they are unable to achieve great performance in link prediction concerning newly-emerged unseen entities. Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed, where TKGC models are required to achieve great link prediction performance concerning newly-emerged entities that only have few-shot observed examples. In this work, we propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task. In FITCARL, an agent traverses through the whole TKG to search for the prediction answer. A policy network is designed to guide the search process based on the traversed path. To better address the data scarcity problem in the few-shot setting, we introduce a module that computes the confidence of each candidate action and integrate it into the policy for action selection. We also exploit the entity concept information with a novel concept regularizer to boost model performance. Experimental results show that FITCARL achieves stat-of-the-art performance on TKG few-shot OOG link prediction. Code and supplementary appendices are provided (https://github.com/ZifengDing/FITCARL/tree/main).

Z. Ding and J. Wu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    TITer can model unseen entities, but it is not designed for few-shot setting and requires a substantial number of associated facts. Besides, both TITer and CluSTeR are TKG forecasting methods, where models are asked to predict future links given the past TKG information (different from TKGC, see Appendix B for discussion).

  2. 2.

    For each query quadruple in the form of \((\tilde{e}_q, r_q, e', t_q)\), we derive its LP query as \((e', r_q^{-1}, ?, t_q)\). \(r_q^{-1}\) is \(r_q\)’s inverse relation. The agent always starts from \((e', t_q)\).

  3. 3.

    Both original and inverse relations are trained in pre-training.

  4. 4.

    All LP queries are transformed into object prediction in TKG few-shot OOG LP.

References

  1. Abboud, R., Ceylan, İ.İ., Lukasiewicz, T., Salvatori, T.: Boxe: a box embedding model for knowledge base completion. In: NeurIPS (2020)

    Google Scholar 

  2. Ammanabrolu, P., Hausknecht, M.J.: Graph constrained reinforcement learning for natural language action spaces. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  3. Baek, J., Lee, D.B., Hwang, S.J.: Learning to extrapolate knowledge: transductive few-shot out-of-graph link prediction. In: NeurIPS (2020)

    Google Scholar 

  4. Balazevic, I., Allen, C., Hospedales, T.M.: Tucker: tensor factorization for knowledge graph completion. In: EMNLP/IJCNLP (1), pp. 5184–5193. Association for Computational Linguistics (2019)

    Google Scholar 

  5. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  6. Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., Ward, M.: ICEWS Coded Event Data (2015)

    Google Scholar 

  7. Chen, K., Wang, Y., Li, Y., Li, A.: Rotateqvs: representing temporal information as rotations in quaternion vector space for temporal knowledge graph completion. In: ACL (1), pp. 5843–5857. Association for Computational Linguistics (2022)

    Google Scholar 

  8. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning for few-shot link prediction in knowledge graphs. In: EMNLP/IJCNLP (1), pp. 4216–4225. Association for Computational Linguistics (2019)

    Google Scholar 

  9. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP, pp. 1724–1734. ACL (2014)

    Google Scholar 

  10. Ding, Z., He, B., Ma, Y., Han, Z., Tresp, V.: Learning meta representations of one-shot relations for temporal knowledge graph link prediction. CoRR abs/2205.10621 (2022)

    Google Scholar 

  11. Ding, Z., Ma, Y., He, B., Han, Z., Tresp, V.: A simple but powerful graph encoder for temporal knowledge graph completion. In: NeurIPS 2022 Temporal Graph Learning Workshop (2022)

    Google Scholar 

  12. Ding, Z., et al.: Forecasting question answering over temporal knowledge graphs. CoRR abs/2208.06501 (2022)

    Google Scholar 

  13. Ding, Z., Wu, J., He, B., Ma, Y., Han, Z., Tresp, V.: Few-shot inductive learning on temporal knowledge graphs using concept-aware information. In: 4th Conference on Automated Knowledge Base Construction (2022)

    Google Scholar 

  14. Guo, J., Kok, S.: Bique: biquaternionic embeddings of knowledge graphs. In: EMNLP (1), pp. 8338–8351. Association for Computational Linguistics (2021)

    Google Scholar 

  15. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for out-of-knowledge-base entities: a graph neural network approach. In: IJCAI, pp. 1802–1808. ijcai.org (2017)

    Google Scholar 

  16. He, Y., Wang, Z., Zhang, P., Tu, Z., Ren, Z.: VN network: embedding newly emerging entities with virtual neighbors. In: CIKM, pp. 505–514. ACM (2020)

    Google Scholar 

  17. Jung, J., Jung, J., Kang, U.: Learning to walk across time for interpretable temporal knowledge graph completion. In: KDD, pp. 786–795. ACM (2021)

    Google Scholar 

  18. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  19. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW (Companion Volume), pp. 1771–1776. ACM (2018)

    Google Scholar 

  20. Li, J., Tang, T., Zhao, W.X., Wei, Z., Yuan, N.J., Wen, J.: Few-shot knowledge graph-to-text generation with pretrained language models. In: ACL/IJCNLP (Findings). Findings of ACL, vol. ACL/IJCNLP 2021, pp. 1558–1568. Association for Computational Linguistics (2021)

    Google Scholar 

  21. Li, Z., et al.: Search from history and reason for future: two-stage reasoning on temporal knowledge graphs. In: ACL/IJCNLP (1), pp. 4732–4743. Association for Computational Linguistics (2021)

    Google Scholar 

  22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  23. Messner, J., Abboud, R., Ceylan, İ.İ.: Temporal knowledge graph completion using box embeddings. In: AAAI, pp. 7779–7787. AAAI Press (2022)

    Google Scholar 

  24. Mirtaheri, M., Rostami, M., Ren, X., Morstatter, F., Galstyan, A.: One-shot learning for temporal knowledge graphs. In: 3rd Conference on Automated Knowledge Base Construction (2021)

    Google Scholar 

  25. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816. Omnipress (2011)

    Google Scholar 

  26. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: Chronor: rotation based temporal knowledge graph embedding. In: AAAI, pp. 6471–6479. AAAI Press (2021)

    Google Scholar 

  27. Saxena, A., Tripathi, A., Talukdar, P.P.: Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In: ACL, pp. 4498–4507. Association for Computational Linguistics (2020)

    Google Scholar 

  28. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  29. Sheng, J., et al.: Adaptive attentional network for few-shot knowledge graph completion. In: EMNLP (1), pp. 1681–1691. Association for Computational Linguistics (2020)

    Google Scholar 

  30. Sun, H., Zhong, J., Ma, Y., Han, Z., He, K.: Timetraveler: reinforcement learning for temporal knowledge graph forecasting. In: EMNLP (1), pp. 8306–8319. Association for Computational Linguistics (2021)

    Google Scholar 

  31. Tresp, V., Esteban, C., Yang, Y., Baier, S., Krompaß, D.: Learning with memory embeddings. arXiv preprint arXiv:1511.07972 (2015)

  32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, JMLR Workshop and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

    Google Scholar 

  33. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen, H., Frederiksen, N. (eds.) Contributions to Mathematical Psychology, pp. 110–127. Holt, Rinehart and Winston, New York (1964)

    Google Scholar 

  34. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  36. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS, pp. 3630–3638 (2016)

    Google Scholar 

  37. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation for inductive knowledge graph embedding. In: AAAI, pp. 7152–7159. AAAI Press (2019)

    Google Scholar 

  38. Wang, R., et al.: Learning to sample and aggregate: few-shot reasoning over temporal knowledge graphs. In: NeurIPS (2022)

    Google Scholar 

  39. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: Temp: temporal message passing for temporal knowledge graph completion. In: EMNLP (1), pp. 5730–5746. Association for Computational Linguistics (2020)

    Google Scholar 

  40. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning for knowledge graphs. In: EMNLP, pp. 1980–1990. Association for Computational Linguistics (2018)

    Google Scholar 

  41. Xu, C., Chen, Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings. In: NAACL-HLT, pp. 2569–2578. Association for Computational Linguistics (2021)

    Google Scholar 

  42. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware knowledge graph embedding via temporal rotation. In: COLING, pp. 1583–1593. International Committee on Computational Linguistics (2020)

    Google Scholar 

  43. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (Poster) (2015)

    Google Scholar 

  44. Zhang, F., Zhang, Z., Ao, X., Zhuang, F., Xu, Y., He, Q.: Along the time: timeline-traced embedding for temporal knowledge graph completion. In: CIKM, pp. 2529–2538. ACM (2022)

    Google Scholar 

  45. Zhang, Y., Dai, H., Kozareva, Z., Smola, A.J., Song, L.: Variational reasoning for question answering with knowledge graph. In: AAAI, pp. 6069–6076. AAAI Press (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Tresp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Z., Wu, J., Li, Z., Ma, Y., Tresp, V. (2023). Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs Using Confidence-Augmented Reinforcement Learning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics