Skip to main content

Towards Practical Federated Causal Structure Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Understanding causal relations is vital in scientific discovery. The process of causal structure learning involves identifying causal graphs from observational data to understand such relations. Usually, a central server performs this task, but sharing data with the server poses privacy risks. Federated learning can solve this problem, but existing solutions for federated causal structure learning make unrealistic assumptions about data and lack convergence guarantees. \(\textsc {FedC}^{2}\textsc {SL}\) is a federated constraint-based causal structure learning scheme that learns causal graphs using a federated conditional independence test, which examines conditional independence between two variables under a condition set without collecting raw data from clients. \(\textsc {FedC}^{2}\textsc {SL}\) requires weaker and more realistic assumptions about data and offers stronger resistance to data variability among clients. FedPC and FedFCI are the two variants of \(\textsc {FedC}^{2}\textsc {SL}\) for causal structure learning in causal sufficiency and causal insufficiency, respectively. The study evaluates \(\textsc {FedC}^{2}\textsc {SL}\) using both synthetic datasets and real-world data against existing solutions and finds it demonstrates encouraging performance and strong resilience to data heterogeneity among clients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addo, P.M., Manibialoa, C., McIsaac, F.: Exploring nonlinearity on the co2 emissions, economic production and energy use nexus: a causal discovery approach. Energy Rep. 7, 6196–6204 (2021)

    Article  Google Scholar 

  2. Amiri, M.M., Gunduz, D., Kulkarni, S.R., Poor, H.V.: Federated learning with quantized global model updates. arXiv preprint arXiv:2006.10672 (2020)

  3. Belyaeva, A., Squires, C., Uhler, C.: Dci: learning causal differences between gene regulatory networks. Bioinformatics 37(18), 3067–3069 (2021)

    Article  Google Scholar 

  4. Bishop, Y.M., Fienberg, S.E., Fienberg, S.E., Holland, P.W.: Discrete multivariate analysis (1976)

    Google Scholar 

  5. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste, R., Willemson, J.: Privacy-preserving statistical data analysis on federated databases. In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 30–55. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06749-0_3

    Chapter  Google Scholar 

  6. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  7. Chai, Z., Chen, Y., Zhao, L., Cheng, Y., Rangwala, H.: Fedat: a high-performance and communication-efficient federated learning system with asynchronous tiers. arXiv preprint arXiv:2010.05958 (2020)

  8. Fereidooni, H., et al.: Safelearn: secure aggregation for private federated learning. In: 2021 IEEE Security and Privacy Workshops (SPW), pp. 56–62. IEEE (2021)

    Google Scholar 

  9. Gaboardi, M., Rogers, R.: Local private hypothesis testing: chi-square tests. In: International Conference on Machine Learning, pp. 1626–1635. PMLR (2018)

    Google Scholar 

  10. Gao, E., Chen, J., Shen, L., Liu, T., Gong, M., Bondell, H.: Feddag: federated dag structure learning. arXiv preprint arXiv:2112.03555 (2021)

  11. He, C., et al.: Fedml: a research library and benchmark for federated machine learning. arXiv preprint (2020)

    Google Scholar 

  12. Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM (JACM) 53(3), 307–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ji, Z., Ma, P., Wang, S.: Perfce: performance debugging on databases with chaos engineering-enhanced causality analysis. arXiv preprint arXiv:2207.08369 (2022)

  14. Ji, Z., Ma, P., Wang, S., Li, Y.: Causality-aided trade-off analysis for machine learning fairness. arXiv preprint arXiv:2305.13057 (2023)

  15. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  16. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  17. Khan, L.U., et al.: Federated learning for edge networks: resource optimization and incentive mechanism. IEEE Commun. Maga. 58(10), 88–93 (2020)

    Article  Google Scholar 

  18. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  19. Kusner, M.J., Sun, Y., Sridharan, K., Weinberger, K.Q.: Private causal inference. In: Artificial Intelligence and Statistics, pp. 1308–1317. PMLR (2016)

    Google Scholar 

  20. Lauritzen, S.L.: Graphical Models. Clarendon Press, London (1996)

    MATH  Google Scholar 

  21. Li, P.: Estimators and tail bounds for dimension reduction in \(l_\alpha (0 < \alpha \le 2)\) using stable random projections. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–19 (2008)

    Google Scholar 

  22. Ma, P., et al.: Ml4s: learning causal skeleton from vicinal graphs. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1213–1223 (2022)

    Google Scholar 

  23. Ma, P., Ding, R., Wang, S., Han, S., Zhang, D.: Xinsight: explainable data analysis through the lens of causality. arXiv preprint arXiv:2207.12718 (2022)

  24. Ma, P., Ji, Z., Pang, Q., Wang, S.: Noleaks: differentially private causal discovery under functional causal model. IEEE Trans. Inf. Forensics Secur. 17, 2324–2338 (2022)

    Article  Google Scholar 

  25. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  26. Mhaisen, N., Awad, A., Mohamed, A., Erbad, A., Guizani, M.: Analysis and optimal edge assignment for hierarchical federated learning on non-iid data. arXiv preprint arXiv:2012.05622 (2020)

  27. Mian, O., Kaltenpoth, D., Kamp, M.: Regret-based federated causal discovery. In: The KDD 2022 Workshop on Causal Discovery, pp. 61–69. PMLR (2022)

    Google Scholar 

  28. Murakonda, S.K., Shokri, R., Theodorakopoulos, G.: Quantifying the privacy risks of learning high-dimensional graphical models. In: International Conference on Artificial Intelligence and Statistics, pp. 2287–2295. PMLR (2021)

    Google Scholar 

  29. Ng, I., Zhang, K.: Towards federated bayesian network structure learning with continuous optimization. In: International Conference on Artificial Intelligence and Statistics, pp. 8095–8111. PMLR (2022)

    Google Scholar 

  30. Niu, F., Nori, H., Quistorff, B., Caruana, R., Ngwe, D., Kannan, A.: Differentially private estimation of heterogeneous causal effects. arXiv preprint arXiv:2202.11043 (2022)

  31. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  32. Pinna, A., Soranzo, N., De La Fuente, A.: From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PloS One 5(10), e12912 (2010)

    Article  Google Scholar 

  33. Runge, J., et al.: Inferring causation from time series in earth system sciences. Nat. Commun. 10(1), 1–13 (2019)

    Article  Google Scholar 

  34. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  35. Samet, S., Miri, A.: Privacy-preserving bayesian network for horizontally partitioned data. In: 2009 International Conference on Computational Science and Engineering, vol. 3, pp. 9–16. IEEE (2009)

    Google Scholar 

  36. Shen, X., Ma, S., Vemuri, P., Simon, G.: Challenges and opportunities with causal discovery algorithms: application to alzheimer’s pathophysiology. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  37. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, Prediction, and Search. MIT press, Cambrideg (2000)

    MATH  Google Scholar 

  38. T Dinh, C., Tran, N., Nguyen, T.D.: Personalized federated learning with moreau envelopes. In: NeurIPS (2020)

    Google Scholar 

  39. Triola, M.: Essentials of Statistics. Pearson Education, Boston (2014). https://books.google.com.hk/books?id=QZN-AgAAQBAJ

  40. Vepakomma, P., Amiri, M.M., Canonne, C.L., Raskar, R., Pentland, A.: Private independence testing across two parties. arXiv preprint arXiv:2207.03652 (2022)

  41. Versteeg, P., Mooij, J., Zhang, C.: Local constraint-based causal discovery under selection bias. In: Conference on Causal Learning and Reasoning, pp. 840–860. PMLR (2022)

    Google Scholar 

  42. Wang, H., Kaplan, Z., Niu, D., Li, B.: Optimizing federated learning on non-iid data with reinforcement learning. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1698–1707. IEEE (2020)

    Google Scholar 

  43. Wang, L., Pang, Q., Song, D.: Towards practical differentially private causal graph discovery. Adv. Neural Inf. Process. Syst. 33, 5516–5526 (2020)

    Google Scholar 

  44. Wang, L., Pang, Q., Wang, S., Song, D.: Fed-\(\chi ^{2}\): privacy preserving federated correlation test. arXiv preprint arXiv:2105.14618 (2021)

  45. Wang, Z., Ma, P., Wang, S.: Towards practical federated causal structure learning. arXiv preprint arXiv:2306.09433 (2023)

  46. Xu, D., Yuan, S., Wu, X.: Differential privacy preserving causal graph discovery. In: 2017 IEEE Symposium on Privacy-Aware Computing (PAC), pp. 60–71. IEEE (2017)

    Google Scholar 

  47. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  48. Yue, X., Kontar, R.A., Gómez, A.M.E.: Federated data analytics: a study on linear models. arXiv preprint arXiv:2206.07786 (2022)

  49. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: \(\{\)BatchCrypt\(\}\): efficient homomorphic encryption for \(\{\)Cross-Silo\(\}\) federated learning. In: 2020 USENIX annual technical conference (USENIX ATC 2020), pp. 493–506 (2020)

    Google Scholar 

  50. Zhang, J.: On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif. Intell. 172(16–17), 1873–1896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their insightful comments. We also thank Qi Pang for valuable discussions. This research is supported in part by the HKUST 30 for 30 research initiative scheme under the contract Z1283 and the Academic Hardware Grant from NVIDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingchuan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Ma, P., Wang, S. (2023). Towards Practical Federated Causal Structure Learning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics